Journal Home > Volume 10 , Issue 4

Diabetes is a serious public health problem affecting 422 million people worldwide. Traditional diabetes management often requires multiple daily insulin injections, associated with pain and inadequate glycemia control. Herein, we have developed an ultrasound-triggered insulin delivery system capable of pulsatile insulin release that can provide both long-term sustained and fast on-demand responses. In this system, insulin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocapsules are encapsulated within chitosan microgels. The encapsulated insulin in nanocapsules can passively diffuse from the nanoparticle but remain restricted within the microgel. Upon ultrasound treatment, the stored insulin in microgels can be rapidly released to regulate blood glucose levels. In a chemically-induced type 1 diabetic mouse model, we demonstrated that this system, when activated by 30 s ultrasound administration, could effectively achieve glycemic control for up to one week in a noninvasive, localized, and pulsatile manner.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules

Show Author's information Jin Di1,2,§Jicheng Yu1,2,§Qun Wang3Shanshan Yao4Dingjie Suo4Yanqi Ye1,2Matthew Pless4Yong Zhu4Yun Jing4( )Zhen Gu1,2,5( )
Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
Center for Nanotechnology in Drug Delivery and Division of Molecular PharmaceuticsUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
Department of Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
Department of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA

§ These authors contributed equally to this work.

Abstract

Diabetes is a serious public health problem affecting 422 million people worldwide. Traditional diabetes management often requires multiple daily insulin injections, associated with pain and inadequate glycemia control. Herein, we have developed an ultrasound-triggered insulin delivery system capable of pulsatile insulin release that can provide both long-term sustained and fast on-demand responses. In this system, insulin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocapsules are encapsulated within chitosan microgels. The encapsulated insulin in nanocapsules can passively diffuse from the nanoparticle but remain restricted within the microgel. Upon ultrasound treatment, the stored insulin in microgels can be rapidly released to regulate blood glucose levels. In a chemically-induced type 1 diabetic mouse model, we demonstrated that this system, when activated by 30 s ultrasound administration, could effectively achieve glycemic control for up to one week in a noninvasive, localized, and pulsatile manner.

Keywords: diabetes, nanocapsule, controlled drug delivery, focused ultrasound, microgel

References(33)

1

Whiting, D. R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321.

2
W. H. O. (WHO). Global Report on Diabetes [Online]. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua=1 (accessed Dec 10, 2016).
3

Herman, W. H. The economic costs of diabetes: Is it time for a new treatment paradigm? Diabetes Care 2013, 36, 775–776.

4

Mead, V. P. A new model for understanding the role of environmental factors in the origins of chronic illness: A case study of type 1 diabetes mellitus. Med. Hypotheses 2004, 63, 1035–1046.

5

Wood, J. R.; Miller, K. M.; Maahs, D. M.; Beck, R. W.; DiMeglio, L. A.; Libman, I. M.; Quinn, M.; Tamborlane, W. V.; Woerner, S. E. Most youth with type 1 diabetes in the T1D exchange clinic registry do not meet American diabetes association or international society for pediatric and adolescent diabetes clinical guidelines. Diabetes Care 2013, 36, 2035–2037.

6

Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57.

7

Ohkubo, Y.; Kishikawa, H.; Araki, E.; Miyata, T.; Isami, S.; Motoyoshi, S.; Kojima, Y.; Furuyoshi, N.; Shichiri, M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non- insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pract. 1995, 28, 103–117.

8

The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986.

9

Barnett, A. H. The future of inhaled insulin and incretinmimetics in the management of diabetes. Prim. Care Diabetes 2008, 2, 59–61.

10

Arbit, E.; Kidron, M. Oral insulin: The rationale for this approach and current developments. J. Diabetes Sci. Technol. 2009, 3, 562–567.

11

Mitragotri, S.; Blankschtein, D.; Langer, R. Ultrasound- mediated transdermal protein delivery. Science 1995, 269, 850–853.

12

Gu, Z.; Aimetti, A. A.; Wang, Q.; Dang, T. T.; Zhang, Y. L.; Veiseh, O.; Cheng, H.; Langer, R. S.; Anderson, D. G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 2013, 7, 4194–4201.

13

Fischel-Ghodsian, F.; Brown, L.; Mathiowitz, E.; Brandenburg, D.; Langer, R. Enzymatically controlled drug delivery. Proc. Natl. Acad. Sci. USA 1988, 85, 2403–2406.

14

Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nano­capsules for closed-loop insulin delivery. ACS Nano 2013, 7, 6758–6766.

15

Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle- array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 2015, 112, 8260–8265.

16

Kataoka, K.; Miyazaki, H.; Bunya, M.; Okano, T.; Sakurai, Y. Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 1998, 120, 12694–12695.

17

Chou, D. H. -C.; Webber, M. J.; Tang, B. C.; Lin, A. B.; Thapa, L. S.; Deng, D.; Truong, J. V.; Cortinas, A. B.; Langer, R.; Anderson, D. G. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA 2015, 112, 2401–2406.

18

Makino, K.; Mack, E. J.; Okano, T.; Kim, S. W. A microcapsule self-regulating delivery system for insulin. J. Control. Release 1990, 12, 235–239.

19

Podual, K.; Doyle, F. J.; Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly (ethylene glycol) grafts. J. Control. Release 2000, 67, 9–17.

20

Ng, K. Y.; Liu, Y. Therapeutic ultrasound: Its application in drug delivery. Med. Res. Rev. 2002, 22, 204–223.

21

Zhang, Y. Q.; Yu, J. C.; Bomba, H. N.; Zhu, Y.; Gu, Z. Mechanical force-triggered drug delivery. Chem. Rev. 2016, 116, 12536–12563.

22

Frinking, P. J. A.; Bouakaz, A.; de Jong, N.; Ten Cate, F. J.; Keating, S. Effect of ultrasound on the release of micro- encapsulated drugs. Ultrasonics 1998, 36, 709–712.

23

Ferrara, K. W. Driving delivery vehicles with ultrasound. Adv. Drug Deliv. Rev. 2008, 60, 1097–1102.

24

Timko, B. P.; Dvir, T.; Kohane, D. S. Remotely triggerable drug delivery systems. Adv. Mater. 2010, 22, 4925–4943.

25

Di, J.; Price, J.; Gu, X.; Jiang, X. N.; Jing, Y.; Gu, Z. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv. Healthc. Mater. 2014, 3, 811–816.

26

Ferrara, K.; Pollard, R.; Borden, M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415– 447.

27

Pavlin, C. J.; Harasiewicz, K.; Sherar, M. D.; Foster, F. S. Clinical use of ultrasound biomicroscopy. Ophthalmology 1991, 98, 287–295.

28

Choi, W. I.; Lee, J. H.; Kim, J. -Y.; Kim, J. -C.; Kim, Y. H.; Tae, G. Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J. Control. Release 2012, 157, 272–278.

29

Tinkov, S.; Bekeredjian, R.; Winter, G.; Coester, C. Microbubbles as ultrasound triggered drug carriers. J. Pharm. Sci. 2009, 98, 1935–1961.

30

Schroeder, A.; Avnir, Y.; Weisman, S.; Najajreh, Y.; Gabizon, A.; Talmon, Y.; Kost, J.; Barenholz, Y. Controlling liposomal drug release with low frequency ultrasound: Mechanism and feasibility. Langmuir 2007, 23, 4019–4025.

31

Epstein-Barash, H.; Orbey, G.; Polat, B. E.; Ewoldt, R. H.; Feshitan, J.; Langer, R.; Borden, M. A.; Kohane, D. S. A microcomposite hydrogel for repeated on-demand ultrasound- triggered drug delivery. Biomaterials 2010, 31, 5208–5217.

32

Tao, S. L.; Desai, T. A. Microfabricated drug delivery systems: From particles to pores. Adv. Drug Deliv. Rev. 2003, 55, 315–328.

33

Di, J.; Yao, S. S.; Ye, Y. Q.; Cui, Z.; Yu, J. C.; Ghosh, T. K.; Zhu, Y.; Gu, Z. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 2015, 9, 9407–9415.

File
nr-10-4-1393_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2016
Revised: 24 January 2017
Accepted: 26 January 2017
Published: 06 March 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the Junior Faculty Award of the American Diabetes Association (ADA), the NC State Faculty Research and Professional Development Award to Z. G. The authors thank Dr. John Buse at UNC-CH for helpful discussion and Dr. Elizabeth Loboa, Dr. Michael Gamcsik and Dr. Glenn Walker for assistance in equipment usage.

Return