Journal Home > Volume 10 , Issue 12

Rechargeable Li metal batteries using Li metal anodes have attracted worldwide interest because of their high energy density. The critical barriers limiting their commercial application include uncontrolled dendritic Li growth and the unstable Li–electrolyte interface. Considerable efforts have been directed towards solving these problems, e.g., modifying the electrolyte, creating artificial interfacial layers for the Li metal, and constructing three-dimensional structures for the Li metal. However, stabilizing the Li metal interface remains challenging because of the highly reactive nature of the Li metal. In this study, we utilize a Li-ion conducting hybrid film comprising a garnet-type ion conductor and a poly(ethylene oxide)-based polymer electrolyte as a protective layer to stabilize the Li–electrolyte interface and mitigate the growth of Li dendrites. The hybrid ion-conducting layer can block Li dendrites from proliferating and accommodate Li volume expansion because of its robust mechanical properties. Moreover, the ion-conducting layer allows Li deposition only underneath it, rather than on the surface, functioning as a permanent protective layer to ensure the stability of the Li metal over a long cycling life. The dendrite-inhibiting effect of the ion-conducting protective layer is visually evidenced by in situ microscopy using planar batteries. The protective Li metal anode exhibits excellent cycling stability and low voltage hysteresis (~15 mV at 0.2 mA·cm–2) for a cycle life as long as 1, 000 h. It also shows a high Coulombic efficiency (~99.5%) in a full cell against a LiFePO4 cathode, exhibiting promise for application in Li metal batteries. Our results imply that the ion-conducting protective layer markedly improves the metal anode, yielding safe, long-life, and high-energy-density batteries.


menu
Abstract
Full text
Outline
About this article

Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode

Show Author's information Chunpeng YangBoyang LiuFeng JiangYing ZhangHua XieEmily HitzLiangbing Hu( )
Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 USA

Abstract

Rechargeable Li metal batteries using Li metal anodes have attracted worldwide interest because of their high energy density. The critical barriers limiting their commercial application include uncontrolled dendritic Li growth and the unstable Li–electrolyte interface. Considerable efforts have been directed towards solving these problems, e.g., modifying the electrolyte, creating artificial interfacial layers for the Li metal, and constructing three-dimensional structures for the Li metal. However, stabilizing the Li metal interface remains challenging because of the highly reactive nature of the Li metal. In this study, we utilize a Li-ion conducting hybrid film comprising a garnet-type ion conductor and a poly(ethylene oxide)-based polymer electrolyte as a protective layer to stabilize the Li–electrolyte interface and mitigate the growth of Li dendrites. The hybrid ion-conducting layer can block Li dendrites from proliferating and accommodate Li volume expansion because of its robust mechanical properties. Moreover, the ion-conducting layer allows Li deposition only underneath it, rather than on the surface, functioning as a permanent protective layer to ensure the stability of the Li metal over a long cycling life. The dendrite-inhibiting effect of the ion-conducting protective layer is visually evidenced by in situ microscopy using planar batteries. The protective Li metal anode exhibits excellent cycling stability and low voltage hysteresis (~15 mV at 0.2 mA·cm–2) for a cycle life as long as 1, 000 h. It also shows a high Coulombic efficiency (~99.5%) in a full cell against a LiFePO4 cathode, exhibiting promise for application in Li metal batteries. Our results imply that the ion-conducting protective layer markedly improves the metal anode, yielding safe, long-life, and high-energy-density batteries.

Keywords: Li metal battery, Li dendrites, garnet solid-state electrolyte, interface protection, ion-conducting membrane

References(42)

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

2

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

3

Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.

4

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

5

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

6

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. -W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

7

Kim, H.; Jeong, G.; Kim, Y. -U.; Kim, J. -H.; Park, C. -M.; Sohn, H. -J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

8

Lu, D. P.; Shao, Y. Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J. G.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 2015, 5, 1400993.

9

Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

10

Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electro­deposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

11

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. -G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

12

Hu, J. J.; Long, G. K.; Liu, S.; Li, G. R.; Gao, X. P. A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. Chem. Commun. 2014, 50, 14647–14650.

13

Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S. G.; Yamamoto, O. A highly reversible lithium metal anode. Sci. Rep. 2014, 4, 3815.

14

Yang, C. -P.; Yin, Y. -X.; Zhang, S. -F.; Li, N. -W.; Guo, Y. -G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

15

Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

16

Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436.

17

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

18

Basile, A.; Bhatt, A. I.; O'Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 2016, 7, 11794.

19

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

20

Share, K.; Westover, A.; Li, M. Y.; Pint, C. L. Surface engineering of nanomaterials for improved energy storage—A review. Chem. Eng. Sci. 2016, 154, 3–19.

21

Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229.

22

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

23

Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

24

Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 2015, 9, 5884–5892.

25

Liu, W.; Lin, D. C.; Pei, A.; Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 2016, 138, 15443–15450.

26

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

27

Tu, Z. Y.; Nath, P.; Lu, Y. Y.; Tikekar, M. D.; Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 2015, 48, 2947–2956.

28

Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 2014, 136, 7395–7402.

29

Trigueiro, J. P. C.; Borges, R. S.; Lavall, R. L.; Calado, H. D. R.; Silva, G. G. Polymeric nanomaterials as electrolyte and electrodes in supercapacitors. Nano Res. 2009, 2, 733–739.

30

Zeng, X. -X.; Yin, Y. -X.; Li, N. -W.; Du, W. -C.; Guo, Y. -G.; Wan, L. -J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc. 2016, 138, 15825– 15828.

31

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

32

Mangal, R.; Nath, P.; Tikekar, M.; Archer, L. A. Enthalpy- driven stabilization of dispersions of polymer-grafted nano­particles in high-molecular-weight polymer melts. Langmuir 2016, 32, 10621–10631.

33

Li, Y. T.; Xu, B. Y.; Xu, H. H.; Duan, H. N.; Lü, X. J.; Xin, S.; Zhou, W. D.; Xue, L. G.; Fu, G. T.; Manthiram, A. et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. 2017, 129, 771–774.

34

Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

35

Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164.

36

Fu, K. K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y.; Yan, C. Y. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.

37

Luo, W.; Gong, Y. H.; Zhu, Y. Z.; Fu, K. K.; Dai, J. Q.; Lacey, S. D.; Wang, C. W.; Liu, B. Y.; Han, X. G.; Mo, Y. F. et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 2016, 138, 12258–12262.

38

Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.

39

Liu, W.; Lin, D. C.; Sun, J.; Zhou, G. M.; Cui, Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 2016, 10, 11407–11413.

40

Gondaliya, N.; Kanchan, D. K.; Sharma, P.; Joge, P. Structural and conductivity studies of poly(ethylene oxide)—Silver triflate polymer electrolyte system. Mater. Sci. Appl. 2011, 2, 1639–1643.

41

Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

42

Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 2014, 5, 4224.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2017
Revised: 19 January 2017
Accepted: 21 January 2017
Published: 09 May 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We acknowledge the support of the Maryland NanoCenter and its AIMLab. Y. Z. would like to acknowledge the China Scholarship Council (No. 201506680044) for financial support.

Return