Journal Home > Volume 10 , Issue 4

Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method. Flower-like sheaths are assembled from numerous defect-rich O-incorporated {0001} MoS2 ultrathin nanosheets (NSs), and {1120}- facet surrounded CdS NW stems are grown preferentially along the c-axis. Interestingly, the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs. Moreover, the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs. Therefore, in the absence of noble metals as co-catalysts, the 1D MoS2 NS/CdS NW hybrids exhibit an excellent H2-generation rate of 10.85 mmol·g–1·h–1 and a quantum yield of 22.0% at λ = 475 nm, which is far better than those of Pt/CdS NWs, pure MoS2 NSs, and CdS NWs as well as their physical mixtures. Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution

Show Author's information Haifeng Lin1Yanyan Li2Haoyi Li1Xun Wang1( )
Key Lab of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China
Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China

Abstract

Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method. Flower-like sheaths are assembled from numerous defect-rich O-incorporated {0001} MoS2 ultrathin nanosheets (NSs), and {1120}- facet surrounded CdS NW stems are grown preferentially along the c-axis. Interestingly, the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs. Moreover, the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs. Therefore, in the absence of noble metals as co-catalysts, the 1D MoS2 NS/CdS NW hybrids exhibit an excellent H2-generation rate of 10.85 mmol·g–1·h–1 and a quantum yield of 22.0% at λ = 475 nm, which is far better than those of Pt/CdS NWs, pure MoS2 NSs, and CdS NWs as well as their physical mixtures. Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.

Keywords: charge separation, active sites, visible-light photocatalysis, CdS hetero-nanowires, defect-rich oxygen-doped MoS2 ultrathin nanosheets

References(67)

1

Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

2

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

3

Peng, T. Y.; Li, K.; Zeng, P.; Zhang, Q. G.; Zhang, X. G. Enhanced photocatalytic hydrogen production over graphene oxide–cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C 2012, 116, 22720–22726.

4

Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210– 1214.

5

Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

6

Lu, X.; Luo, X.; Zhang, J.; Quek, S. Y.; Xiong, Q. H. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559–3597.

7

Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. H.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nano­sheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 2016, 9, 2284–2293.

8

Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.

9

Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

10

Du, Y. P.; Chen, B.; Yin, Z. Y.; Liu, Z. Q.; Zhang, H. Phosphine-free, low-temperature synthesis of tetrapod-shaped CdS and its hybrid with Au nanoparticles. Small 2014, 10, 4727–4734.

11

Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well- defined reactive crystal planes. J. Catal. 2005, 229, 206–212.

12

Chen, W.; Kuang, Q.; Xie, Z. X. Morphology evolution of NaTaO3 submicrometer single-crystals: From cubes to quasi-spheres. Sci. China Mater. 2015, 58, 281–288.

13

Lai, X. -Y.; Wang, C. -R.; Jin, Q.; Yu, R. -B.; Wang, D. Syn­thesis and photocatalytic activity of hierarchical flower-like SrTiO3 nanostructure. Sci. China Mater. 2015, 58, 192–197.

14

Kuang, Q.; Wang, X.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications. Acc. Chem. Res. 2014, 47, 308–318.

15

Jiang, Q. N.; Jiang, Z. Y.; Zhang, L.; Lin, H. X.; Yang, N.; Li, H.; Liu, D. Y.; Xie, Z. X.; Tian, Z. Q. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res. 2011, 4, 612–622.

16

Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

DOI
17

Zhang, Z. C.; Liu, Y.; Chen, B.; Gong, Y.; Gu, L.; Fan, Z. X.; Yang, N. L.; Lai, Z. C.; Chen, Y.; Wang, J. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282–10286.

18

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

19

Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4h/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

20

Yang, S. Y.; Shim, G. W.; Seo, S. -B.; Choi, S. -Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255–262.

21

Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

22

Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild- Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

23

Liu, D. B.; Xu, W. Y.; Liu, Q.; He, Q.; Haleem, Y. A.; Wang, C. D.; Xiang, T.; Zou, C. W.; Chu, W. S.; Zhong, J. et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res. 2016, 9, 2079–2087.

24

Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177.

25

Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.

26

Wu, N. Q.; Wang, J.; Tafen de, N.; Wang, H.; Zheng, J. G.; Lewis, J. P.; Liu, X. G.; Leonard, S. S.; Manivannan, A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 2010, 132, 6679–6685.

27

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

28

Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9, 140–147.

29

He, J.; Chen, L.; Wang, F.; Liu, Y.; Chen, P.; Au, C. T.; Yin, S. F. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution. ChemSusChem 2016, 9, 624–630.

30

Xing, X. N.; Zhang, Q.; Huang, Z.; Lu, Z. J.; Zhang, J. B.; Li, H. Q.; Zeng, H. B.; Zhai, T. Y. Strain driven spectral broadening of Pb ion exchanged CdS nanowires. Small 2016, 12, 874–881.

31

Cao, B. L.; Jiang, Y.; Wang, C.; Wang, W. H.; Wang, L. Z.; Niu, M.; Zhang, W. J.; Li, Y. Q.; Lee, S. T. Synthesis and lasing properties of highly ordered CdS nanowire arrays. Adv. Funct. Mater. 2007, 17, 1501–1506.

32

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

33

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

34

Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J. C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A: Molecul. Biomol. Spectr. 1995, 51, 1323–1344.

35

Weng, B.; Zhang, X.; Zhang, N.; Tang, Z. -R.; Xu, Y. -J. Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: Synthesis, formation mechanism, and photocatalytic appli­cation. Langmuir 2015, 31, 4314–4322.

36

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

37

Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy- induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

38

Li, G. S.; Boerio-Goates, J.; Woodfield, B. F.; Li, L. P. Evidence of linear lattice expansion and covalency enhan­cement in rutile TiO2 nanocrystals. Appl. Phys. Lett. 2004, 85, 2059–2061.

39

Ayyub, P.; Palkar, V. R.; Chattopadhyay, S.; Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 1995, 51, 6135–6138.

40

Li, X. D.; Li, W.; Li, M. C.; Cui, P.; Chen, D. H.; Gengenbach, T.; Chu, L. H.; Liu, H. Y.; Song, G. S. Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2 nanosheet nanocomposite and its synergistic lithium storage performance. J. Mater. Chem. A 2015, 3, 2762–2769.

41

Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Kipp, T.; Cingolani, R.; Cozzoli, P. D. Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J. Am. Chem. Soc. 2008, 130, 11223–11233.

42

Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.

43

Cheng, H. M.; Ma, J. M.; Zhao, Z. G.; Qi, L. M. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 1995, 7, 663–671.

44

Sau, T. K.; Rogach, A. L. Nonspherical noble metal nano­particles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.

45

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

46

Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168.

47

Chang, Y. -H.; Nikam, R. D.; Lin, C. -T.; Huang, J. -K.; Tseng, C. -C.; Hsu, C. -L.; Cheng, C. -C.; Su, C. -Y.; Li, L. -J.; Chua, D. H. C. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2014, 6, 17679–17685.

48

Xiong, J. H.; Liu, Y. H.; Wang, D. K.; Liang, S. J.; Wu, W. M.; Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A 2015, 3, 12631–12635.

49

Louis, C.; Che, M. EPR investigation of the coordination sphere of molybdenum(5+) ions on thermally reduced silica- supported molybdenum catalysts prepared by the grafting method. J. Phys. Chem. 1987, 91, 2875–2883.

50

Blinc, R.; Cevc, P.; Mrzel, A.; Arčon, D.; Remškar, M.; Milia, F.; Laguta, V. V. EPR spectra of MoS2/C60. Phys. Status Solidi (B) 2010, 247, 3033–3034.

51

Majeed, I.; Nadeem, M. A.; Al-Oufi, M.; Nadeem, M. A.; Waterhouse, G. I. N.; Badshah, A.; Metson, J. B.; Idriss, H. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production: A case study of the Au/CdS system. Appl. Catal. B: Environ. 2016, 182, 266–276.

52
Gao, P.; Liu, J.; Sun, D. D.; Ng, W. Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater. 2013, 250–251, 412–420.https://doi.org/10.1016/j.jhazmat.2013.02.003
DOI
53

Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107.

54

Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262– 1267.

55

Zhang, J.; Zhu, Z. P.; Feng, X. L. Construction of two- dimensional MoS2/CdS p–n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem. —Eur. J. 2014, 20, 10632–10635.

56

Zhuang, T. T.; Liu, Y.; Sun, M.; Jiang, S. L.; Zhang, M. W.; Wang, X. C.; Zhang, Q.; Jiang, J.; Yu, S. H. A unique ternary semiconductor-(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 127, 11657–11662.

57

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

58

Bell, N. J.; Ng, Y. H.; Du, A. J.; Coster, H.; Smith, S. C.; Amal, R. Understanding the enhancement in photoelectro­chemical properties of photocatalytically prepared TiO2- reduced graphene oxide composite. J. Phys. Chem. C 2011, 115, 6004–6009.

59

Wu, T.; Zhang, Q.; Hou, Y.; Wang, L.; Mao, C. Y.; Zheng, S. -T.; Bu, X. H.; Feng, P. Y. Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response. J. Am. Chem. Soc. 2013, 135, 10250–10253.

60

Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectro­chemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.

61

Thurston, T. R.; Wilcoxon, J. P. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J. Phys. Chem. B 1999, 103, 11–17.

62

Meng, F. K.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.

63

Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503–3509.

64

Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem., Int. Ed. 2014, 53, 2339–2343.

65

Bai, Y.; Ye, L. Q.; Wang, L.; Shi, X.; Wang, P. Q.; Bai, W.; Wong, P. K. g-C3N4/Bi4O5I2 heterojunction with I3/I redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2016, 194, 98–104.

66

Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, Y. B. Uncovering the key role of the Fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (metal = Cu, Ag, Au). ACS Appl. Mater. Interfaces 2016, 8, 2111–2119.

67

Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

File
nr-10-4-1377_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 October 2016
Revised: 20 January 2017
Accepted: 22 January 2017
Published: 10 March 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21431003 and 21521091) and China Ministry of Science and Technology (No. 2016YFA0202801). We also thank Dr. Lina Zhang and Ms. Xiaohua Gu for their kind help with the TEM measurements.

Return