Journal Home > Volume 10 , Issue 8

The safe and efficient storage and release of hydrogen is one of the key technological challenges for the fuel cell-based hydrogen economy. Hydrazine monohydrate has attracted considerable attention as a safe and convent chemical hydrogen-storage material. Herein, we report the facile synthesis of NiPt-CeOx nanocomposites supported by three-dimensional nitrogen-doped graphene hydrogels (NGHs) via a simple one-step co-reduction synthesis method. These catalysts were composition-dependent for hydrogen generation from an alkaline solution of hydrazine. (Ni5Pt5)1-(CeOx)0.3/NGH exhibited the highest catalytic activity, with 100% hydrogen selectivity and turnover frequencies of 408 h–1 at 298 K and 3, 064 h–1 at 323 K. These superior catalytic performances are attributed to the electronic structure of the NiPt centers, which was modified by the electron interaction between NiPt and CeOx and the strong metal–support interaction between NiPt-CeOx and the NGH.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature

Show Author's information Xiaoqiong Du1Chao Liu1Cheng Du1Ping Cai1Gongzhen Cheng1Wei Luo1,2( )
College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
Key laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China

Abstract

The safe and efficient storage and release of hydrogen is one of the key technological challenges for the fuel cell-based hydrogen economy. Hydrazine monohydrate has attracted considerable attention as a safe and convent chemical hydrogen-storage material. Herein, we report the facile synthesis of NiPt-CeOx nanocomposites supported by three-dimensional nitrogen-doped graphene hydrogels (NGHs) via a simple one-step co-reduction synthesis method. These catalysts were composition-dependent for hydrogen generation from an alkaline solution of hydrazine. (Ni5Pt5)1-(CeOx)0.3/NGH exhibited the highest catalytic activity, with 100% hydrogen selectivity and turnover frequencies of 408 h–1 at 298 K and 3, 064 h–1 at 323 K. These superior catalytic performances are attributed to the electronic structure of the NiPt centers, which was modified by the electron interaction between NiPt and CeOx and the strong metal–support interaction between NiPt-CeOx and the NGH.

Keywords: hydrogen storage, hydrazine, nitrogen-doped graphene hydrogels, NiPt-CeOx

References(54)

1

Yang, L.; Hua, X.; Su, J.; Luo, W.; Chen, S. L.; Cheng, G. Z. Highly efficient hydrogen generation from formic acid-sodium formate over monodisperse AgPd nanoparticles at room temperature. Appl. Catal. B: Environ. 2015, 168-169, 423–428.

2

Wang, J.; Zhang, X. B.; Wang, Z. L.; Wang, L. M.; Zhang, Y. Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 2012, 5, 6885–6888.

3

Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrogen Energy 2009, 34, 2303–2311.

4

Hannauer, J.; Akdim, O.; Demirci, U. B.; Geantet, C.; Herrmann, J. M.; Miele, P.; Xu, Q. High-extent dehydrogenation of hydrazine borane N2H4BH3 by hydrolysis of BH3 and decomposition of N2H4. Energy Environ. Sci. 2011, 4, 3355–3358.

5

Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem. 2008, 120, 2319–2321.

6

Cui, L.; Xu, Y. H.; Niu, L.; Yang, W. R.; Liu, J. Q. Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3. Nano Res. 2017, 10, 595–604.

7

Aranishi, K.; Jiang, H. L.; Akita, T.; Haruta, M.; Xu, Q. One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core–shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Res. 2011, 4, 1233–1241.

8

Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.

9

Singh, S. K.; Zhang, X. B.; Xu, Q. Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J. Am. Chem. Soc. 2009, 131, 9894–9895.

10

He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J. J.; Zhang, T. A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N2H4·H2O decomposition. Angew. Chem. Int. Ed. 2012, 51, 6191–6194.

11

Zhong, D. C.; Aranishi, K.; Singh, A. K.; Demirci, U. B.; Xu, Q. The synergistic effect of Rh–Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage. Chem. Commun. 2012, 48, 11945–11947.

12

Tong, D. G.; Chu, W.; Wu, P.; Gu, G. F.; Zhang, L. Mesoporous multiwalled carbon nanotubes as supports for monodispersed iron–boron catalysts: Improved hydrogen generation from hydrous hydrazine decomposition. J. Mater. Chem. A 2013, 1, 358–366.

13

Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472–3479.

14

Singh, S. K.; Xu, Q. Nanocatalysts for hydrogen generation from hydrazine. Catal. Sci. Technol. 2013, 3, 1889–1900.

15

Miao, X.; Chen, M. M.; Chu, W.; Wu, P.; Tong, D. G. Mesoporous face-centered-cubic In4Ni alloy nanorices: Superior catalysts for hydrazine dehydrogenation in aqueous solution. ACS Appl. Mater. Interfaces 2016, 8, 25268–25278.

16

Singh, S. K.; Xu, Q. Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine. Chem. Comm. 2010, 46, 6545–6547.

17

Yao, Q. L.; Lu, Z. H.; Zhang, Z. J.; Chen, X. S.; Lan, Y. Q. One-pot synthesis of core–shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Sci. Rep. 2014, 4, 7597.

18

Singh, S. K.; Singh, A. K.; Aranishi, K.; Xu, Q. Noblemetal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 19638–19641.

19

Wang, J.; Li, Y.; Zhang, Y. Precious-metal-free nanocatalysts for highly efficient hydrogen production from hydrous hydrazine. Adv. Funct. Mater. 2014, 24, 7073–7077.

20

Bhattacharjee, D.; Mandal, K.; Dasgupta, S. High performance nickel–palladium nanocatalyst for hydrogen generation from alkaline hydrous hydrazine at room temperature. J. Power Sources 2015, 287, 96–99.

21

Yao, Q. L.; Lu, Z. H.; Yang, K. K.; Chen, X. S.; Zhu, M. H. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Sci. Rep. 2015, 5, 15186.

22

Zhang, J. J.; Kang, Q.; Yang, Z. Q.; Dai, H. B.; Zhuang, D. W.; Wang, P. A cost-effective NiMoB-La(OH)3 catalyst for hydrogen generation from decomposition of alkaline hydrous hydrazine solution. J. Mater. Chem. A 2013, 1, 11623–11628.

23

Chen, J. M.; Lu, Z. H.; Huang, W.; Kang, Z. B.; Chen, X. S. Galvanic replacement synthesis of NiPt/graphene as highly efficient catalysts for hydrogen release from hydrazine and hydrazine borane. J. Alloys Compd. 2017, 695, 3036–3043.

24

Zhang, Z. J.; Wang, Y. Q.; Chen, X. S.; Lu, Z. H. Facile synthesis of NiPt–CeO2 nanocomposite as an efficient catalyst for hydrogen generation from hydrazine borane. J. Power Sources 2015, 291, 14–19.

25

Zhang, Z. J.; Lu, Z. H.; Chen, X. S. Ultrafine Ni–Pt alloy nanoparticles grown on graphene as highly efficient catalyst for complete hydrogen generation from hydrazine borane. ACS Sustainable Chem. Eng. 2015, 3, 1255–1261.

26

Singh, S. K.; Xu, Q. Bimetallic Ni-Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage. Inorg. Chem. 2010, 49, 6148–6152.

27

Aranishi, K.; Singh, A. K.; Xu, Q. Dendrimer-encapsulated bimetallic Pt-Ni nanoparticles as highly efficient catalysts for hydrogen generation from chemical hydrogen storage materials. ChemCatChem 2013, 5, 2248–2252.

28

He, L.; Huang, Y. Q.; Wang, A. Q.; Liu, Y.; Liu, X. Y.; Chen, X. W.; Delgado, J. J.; Wang, X. D.; Zhang, T. Surface modification of Ni/Al2O3 with Pt: Highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine. J. Catal. 2013, 298, 1–9.

29

Wang, H. L.; Yan, J. M.; Wang, Z. L.; Song-Ⅱ, O.; Jiang, Q. Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature. J. Mater. Chem. A 2013, 1, 14957–14962.

30

Zhong, Y. J.; Dai, H. B.; Jiang, Y. Y.; Chen, D. M.; Zhu, M.; Sun, L. X.; Wang, P. Highly efficient Ni@Ni-Pt/La2O3 catalyst for hydrogen generation from hydrous hydrazine decomposition: Effect of Ni-Pt surface alloying. J. Power Sources 2015, 300, 294–300.

31

Cao, N.; Yang, L.; Dai, H. M.; Liu, T.; Su, J.; Wu, X. J.; Luo, W.; Cheng, G. Z. Immobilization of ultrafine bimetallic Ni–Pt nanoparticles inside the pores of metal–organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine. Inorg. Chem. 2014, 53, 10122–10128.

32

Du, Y. S.; Su, J.; Luo, W.; Cheng, G. Z. Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 1031-1034.

33

Chen, J. M.; Yao, Q. L.; Zhu, J.; Chen, X. S.; Lu, Z. H. Rh–Ni nanoparticles immobilized on Ce(OH)CO3 nanorods as highly efficient catalysts for hydrogen generation from alkaline solution of hydrazine. Int. J. Hydrogen Energy 2016, 41, 3946–3954.

34

Zhang, Z. J.; Lu, Z. H.; Tan, H. L.; Chen, X. S.; Yao, Q. L. CeOx-modified RhNi nanoparticles grown on rGO as highly efficient catalysts for complete hydrogen generation from hydrazine borane and hydrazine. J. Mater. Chem. A 2015, 3, 23520–23529.

35

Jiang, Y. Y.; Kang, Q.; Zhang, J. J.; Dai, H. B.; Wang, P. High-performance nickel–platinum nanocatalyst supported on mesoporous alumina for hydrogen generation from hydrous hydrazine. J. Power Sources 2015, 273, 554–560.

36

Song-Ⅱ, O.; Yan, J. M.; Wang, H. L.; Wang, Z. L.; Jiang, Q. Ni/La2O3 catalyst containing low content platinum–rhodium for the dehydrogenation of N2H4·H2O at room temperature. J. Power Sources 2014, 262, 386–390.

37

Xia, B. Q.; Liu, T.; Luo, W.; Cheng, G. Z. NiPt–MnOx supported on N-doped porous carbon derived from metal–organic frameworks for highly efficient hydrogen generation from hydrazine. J. Mater. Chem. A 2016, 4, 5616–5622.

38

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

39

Zhao, Z. F.; Mei, T.; Chen, Y.; Qiu, J. L.; Xu, D. D.; Wang, J. Y.; Li, J. H.; Wang, X. B. One-pot synthesis of lightweight nitrogen-doped graphene hydrogels with supercapacitive properties. Mater. Res. Bull. 2015, 68, 245–253.

40

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

41

Tong, D. G.; Zeng, X. L.; Chu, W.; Wang, D.; Wu, P. Preparation of monodispersed cobalt–boron spherical nanoparticles and their behavior during the catalytic decomposition of hydrous hydrazine. Mater. Res. Bull. 2010, 45, 442–447.

42

Yang, F.; Li, Y. Z.; Chu, W.; Li, C.; Tong, D. G. Mesoporous Co–B–N–H nanowires: Superior catalysts for decomposition of hydrous hydrazine to generate hydrogen. Catal. Sci. Technol. 2014, 4, 3168–3179.

43

Du, X. Q.; Du, C.; Cai, P.; Luo, W.; Cheng, G. Z. NiPt nanocatalysts supported on boron and nitrogen co-doped graphene for superior hydrazine dehydrogenation and methanol oxidation. ChemCatChem 2016, 8, 1410–1416.

44

Song-Ⅱ, O.; Yan, J. M.; Wang, H. L.; Wang, Z. L.; Jiang, Q. High catalytic kinetic performance of amorphous CoPt NPs induced on CeOx for H2 generation from hydrous hydrazine. Int. J. Hydrogen Energy 2014, 39, 3755–3761.

45

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

46

Zhu, X. L.; Zhang, Y. J.; Huang, H. Q.; Zhang, H. J.; Hou, L.; Zhang, Z. Z. Functionalized graphene oxide-based thermosensitive hydrogel for near-infrared chemo-photothermal therapy on tumor. J. Biomater. Appl. 2016, 30, 1230–1241.

47

Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.

48

Zhang, X. P.; Liu, D.; Yang, L.; Zhou, L. M.; You, T. Y. Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis. J. Mater. Chem. A 2015, 3, 10031–10037.

49

Chen, P.; Yang, J. J.; Li, S. S.; Wang, Z.; Xiao, T. Y.; Qian, Y. H.; Yu, S. H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2013, 2, 249–256.

50

Zhang, J. J.; Li, R. Y.; Li, Z. J.; Liu, J. K.; Gu, Z. G.; Wang, G. L. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene. Nanoscale 2014, 6, 5458–5466.

51

Jiang, Y. Y.; Dai, H. B.; Zhong, Y. J.; Chen, D. M.; Wang, P. Complete and rapid conversion of hydrazine monohydrate to hydrogen over supported Ni–Pt nanoparticles on mesoporous ceria for chemical hydrogen storage. Chem. —Eur. J. 2015, 21, 15439–15445.

52

Zhen, W. L.; Ma, J. T.; Lu, G. X. Small-sized Ni (111) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Appl. Catal. B: Environ. 2016, 190, 12–25.

53

He, L.; Liang, B. L.; Li, L.; Yang, X. F.; Huang, Y. Q.; Wang, A. Q.; Wang, X. D.; Zhang, T. Cerium-oxidemodified nickel as a non-noble metal catalyst for selective decomposition of hydrous hydrazine to hydrogen. ACS Catal. 2015, 5, 1623–1628.

54

Jiang, H. L.; Singh, S. K.; Yan, J. M.; Zhang, X. B.; Xu, Q. Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem 2010, 3, 541–549.

File
nr-10-8-2856_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 December 2016
Revised: 18 January 2017
Accepted: 20 January 2017
Published: 06 May 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21571145), the Creative Research Groups of Hubei Province (No. 2014CFA007), and Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.

Return