Journal Home > Volume 10 , Issue 9

A facile one-step approach to synthesize various phase-separated porous, raspberry-like, flower-like, core–shell and anomalous nanoparticles and nanocapsules via 1, 1-diphenylethene (DPE) controlled soap-free emulsion copolymerization of styrene (S) with glycidyl methacrylate (GMA), or acrylic acid (AA) is reported. By regulating the mass ratio of S/GMA, transparent polymer solution, porous and anomalous P(S-GMA) particles could be produced. The P(S-GMA) particles turn from flower-like to raspberry-like and then to anomalous structures with smooth surface as the increase of divinylbenzene (DVB) crosslinker. Transparent polymer solution, nanocapsules and core–shell P(S-AA) particles could be obtained by altering the mole ratio of S/AA; anomalous and raspberry-like P(S-AA) particles are produced by adding DVB. The unpolymerized S resulted from the low monomer conversion in the presence of DPE aggregates to form nano-sized droplets, and migrates towards the external surfaces of the GMA-enriched P(S-GMA) particles and the internal bulk of the AA-enriched P(S-AA) particles. The nano-sized droplets function as in situ porogen, porous P(S-GMA) particles and P(S-AA) nanocapsules are produced when the porogen is removed. This novel, facile, one-step method with excellent controllability and reproducibility will inspire new strategies for creating hierarchical phase-separated polymeric particles with various structures by simply altering the species and ratio of comonomers. The drug loading and release experiments on the porous particles and nanocapsules demonstrate that the release of doxorubicin hydrochloride is very slow in weakly basic environment and quick in weakly acidic environment, which enables the porous particles and nanocapsules with promising potential in drug delivery applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A series of nanoparticles with phase-separated structures by 1, 1-diphenylethene controlled one-step soap-free emulsion copolymerization and their application in drug release

Show Author's information Xinlong FanJin LiuXiangkun JiaYin LiuHao ZhangShenqiang WangBaoliang ZhangHepeng ZhangQiuyu Zhang( )
Department of Applied ChemistrySchool of Natural and Applied SciencesNorthwestern Polytechnical UniversityNo. 127West Youyi RoadXi'an710072China

Abstract

A facile one-step approach to synthesize various phase-separated porous, raspberry-like, flower-like, core–shell and anomalous nanoparticles and nanocapsules via 1, 1-diphenylethene (DPE) controlled soap-free emulsion copolymerization of styrene (S) with glycidyl methacrylate (GMA), or acrylic acid (AA) is reported. By regulating the mass ratio of S/GMA, transparent polymer solution, porous and anomalous P(S-GMA) particles could be produced. The P(S-GMA) particles turn from flower-like to raspberry-like and then to anomalous structures with smooth surface as the increase of divinylbenzene (DVB) crosslinker. Transparent polymer solution, nanocapsules and core–shell P(S-AA) particles could be obtained by altering the mole ratio of S/AA; anomalous and raspberry-like P(S-AA) particles are produced by adding DVB. The unpolymerized S resulted from the low monomer conversion in the presence of DPE aggregates to form nano-sized droplets, and migrates towards the external surfaces of the GMA-enriched P(S-GMA) particles and the internal bulk of the AA-enriched P(S-AA) particles. The nano-sized droplets function as in situ porogen, porous P(S-GMA) particles and P(S-AA) nanocapsules are produced when the porogen is removed. This novel, facile, one-step method with excellent controllability and reproducibility will inspire new strategies for creating hierarchical phase-separated polymeric particles with various structures by simply altering the species and ratio of comonomers. The drug loading and release experiments on the porous particles and nanocapsules demonstrate that the release of doxorubicin hydrochloride is very slow in weakly basic environment and quick in weakly acidic environment, which enables the porous particles and nanocapsules with promising potential in drug delivery applications.

Keywords: controlled release, nanocapsules, porous, phase separation, 1, 1-diphenylethene controlled polymerization

References(62)

1

Schulze, M. W.; McIntosh, L. D.; Hillmyer, M. A.; Lodge, T. P. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 2014, 14, 122-126.

2

Seo, M.; Hillmyer, M. A. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 2012, 336, 1422-1425.

3

Wu, Q. Y.; Liu, B. T.; Li, M.; Wan, L. S.; Xu, Z. K. Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights. J. Membrane Sci. 2013, 437, 227-236.

4

Wu, Q. Y.; Wan, L. S.; Xu, Z. K. Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. J. Membrane Sci. 2012, 409-410, 355-364.

5

Xue, L. J.; Zhang, J. L.; Han, Y. C. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012, 37, 564-594.

6

Lagerwall, J. P. F.; Schütz, C.; Salajkova, M.; Noh, J.; Park, J. H.; Scalia, G.; Bergström, L. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014, 6, e80.

7

Sai, H.; Tan, K. W.; Hur, K.; Asenath-Smith, E.; Hovden, R.; Jiang, Y.; Riccio, M.; Muller, D. A.; Elser, V.; Estroff, L. A. et al. Hierarchical porous polymer scaffolds from block copolymers. Science 2013, 341, 530-534.

8

Urban, J.; Svec, F.; Fréchet, J. M. J. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters. Biotechnol. Bioeng. 2012, 109, 371-380.

9

Tan, J. J.; Li, C. M.; Zhou, J.; Yin, C. J.; Zhang, B. L.; Gu, J. W.; Zhang, Q. Y. Fast and facile fabrication of porous polymer particles via thiol-ene suspension photopolymerization. RSC Adv. 2014, 4, 13334-13339.

10

Gokmen, M. T.; Du Prez, F. E. Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog. Polym. Sci. 2012, 37, 365-405.

11

Kowalczuk, A.; Trzcinska, R.; Trzebicka, B.; Müller, A. H. E.; Dworak, A.; Tsvetanov, C. B. Loading of polymer nanocarriers: Factors, mechanisms and applications. Prog. Polym. Sci. 2014, 39, 43-86.

12

Lee, W. L.; Guo, W. M.; Ho, V. H. B.; Saha, A.; Chong, H. C.; Tan, N. S.; Widjaja, E.; Tan, E. Y.; Loo, S. C. J. Inhibition of 3-D tumor spheroids by timed-released hydrophilic and hydrophobic drugs from multilayered polymeric microparticles. Small 2014, 10, 3986-3996.

13

Lee, W. L.; Widjaja, E.; Loo, S. C. J. One-step fabrication of triple-layered polymeric microparticles with layer localization of drugs as a novel drug-delivery system. Small 2010, 6, 1003-1011.

14

Hofmeister, I.; Landfester, K.; Taden, A. Controlled formation of polymer nanocapsules with high diffusion-barrier properties and prediction of encapsulation efficiency. Angew. Chem., Int. Ed. 2015, 54, 327-330.

15

Zhao, Y.; Berger, R.; Landfester, K.; Crespy, D. Double redox-responsive release of encoded and encapsulated molecules from patchy nanocapsules. Small 2015, 11, 2995-2999.

16

Vecchione, R.; Iaccarino, G.; Bianchini, P.; Marotta, R.; D'autilia, F.; Quagliariello, V.; Diaspro, A.; Netti, P. A. Ultrastable liquid-liquid interface as viable route for controlled deposition of biodegradable polymer nanocapsules. Small 2016, 12, 3005-3013.

17

Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res. 2016, 9, 2070-2078.

18

Li, L. Y.; Cui, C. Y.; Su, W. Y.; Wang, Y. X.; Wang, R. H. Hollow click-based porous organic polymers for heterogenization of[Ru(bpy)3]2+ through electrostatic interactions. Nano Res. 2016, 9, 779-786.

19

Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schmelz, J.; Hanisch, A.; Schmalz, H.; Müller, A. H. E. Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance. J. Am. Chem. Soc. 2012, 134, 13850-13860.

20

Nisisako, T. Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 2016, 25, 1-12.

21

Wang, X. Y.; Feng, X. Y.; Ma, G. P.; Yao, L.; Ge, M. F. Amphiphilic Janus particles generated via a combination of diffusion-induced phase separation and magnetically driven dewetting and their synergistic self-assembly. Adv. Mater. 2016, 28, 3131-3137.

22

Fan, X. L.; Jia, X. K.; Zhang, H. P.; Zhang, B. L.; Li, C. M.; Zhang, Q. Y. Synthesis of raspberry-like poly(styrene-glycidyl methacrylate) particles via a one-step soap-free emulsion polymerization process accompanied by phase separation. Langmuir 2013, 29, 11730-11741.

23

Fan, X. L.; Jia, X. K.; Liu, Y.; Zhang, B. L.; Li, C. M.; Liu, Y. L.; Zhang, H. P.; Zhang, Q. Y. Tunable wettability of hierarchical structured coatings derived from one-step synthesized raspberry-like poly(styrene-acrylic acid) particles. Polym. Chem. 2015, 6, 703-713.

24

Lu, C. L.; Urban, M. Rationally designed gibbous stimuli-responsive colloidal nanoparticles. ACS Nano 2015, 9, 3119-3124.

25

Yabu, H.; Sato, S.; Higuchi, T.; Jinnai, H.; Shimomura, M. Creating suprapolymer assemblies: Nanowires, nanorings, and nanospheres prepared from symmetric block-copolymers confined in spherical particles. J. Mater. Chem. 2012, 22, 7672-7675.

26

Klinger, D.; Wang, C. X.; Connal, L. A.; Audus, D. J.; Jang, S. G.; Kraemer, S.; Killops, K. L.; Fredrickson, G. H.; Kramer, E. J.; Hawker, C. J. A facile synthesis of dynamic, shape-changing polymer particles. Angew. Chem., Int. Ed. 2014, 53, 7018-7022.

27

Chen, L. X.; Xu, S. F.; Li, J. H. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922-2942.

28

Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L. L.; Li, J.; Yuan, X. B.; Chen, I. S. Y.; Chen, W. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9, 1022-1031.

29

Hu, R.; Yang, C. B.; Wang, Y. C.; Lin, G. M.; Qin, W.; Ouyan, Q. L.; Law, W. C.; Nguyen, Q. T.; Yoon, H. S.; Wang, X. M. et al. Aggregation-induced emission (AIE) dye loaded polymer nanoparticles for gene silencing in pancreatic cancer and their in vitro and in vivo biocompatibility evaluation. Nano Res. 2015, 8, 1563-1576.

30

Zhang, L. L.; Liu, Y.; Liu, G.; Xu, D.; Liang, S.; Zhu, X. Y.; Lu, Y. F.; Wang, H. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res. 2016, 9, 2424-2432.

31

Gaitzsch, J.; Huang, X.; Voit, B. Engineering functional polymer capsules toward smart nanoreactors. Chem. Rev. 2016, 116, 1053-1093.

32

Zulian, L.; Emilitri, E.; Scavia, G.; Botta, C.; Colombo, M.; Destri, S. Structural iridescent tuned colors from self-assembled polymer opal surfaces. ACS Appl. Mater. Interfaces 2012, 4, 6071-6079.

33

von Freymann, G.; Kitaev, V.; Lotsch, B. V.; Ozin, G. A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528-2554.

34

Li, C. M.; Tan, J. J.; Liu, Y. L.; Zhang, B. L.; Fan, X. L.; Zhang, Q. Y. Facile fabrication of multihollow polymer microspheres via novel two-step assembly of P(St-co-nBA-co-AA) particles. Colloid Polym. Sci. 2015, 293, 993-1001.

35

Zhang, B. L.; Zhang, H. P.; Tian, L.; Li, X. J.; Li, W.; Fan, X. L.; Ali, N.; Zhang, Q. Y. Magnetic microcapsules with inner asymmetric structure: Controlled preparation, mechanism, and application to drug release. Chem. Eng. J. 2015, 275, 235-244.

36

Tian, L.; Zhang, B. L.; Li, W.; Li, X. J.; Fan, X. L.; Jia, X. K.; Zhang, H. P.; Zhang, Q. Y. Facile fabrication of Fe3O4@PS/PGMA magnetic Janus particles via organic-inorganic dual phase separation. RSC Adv. 2014, 4, 27152-27158.

37

Fan, X. L.; Zhang, Q. Y.; Zhang, H. P.; Zhang, B. L.; Li, C. M.; Li, X. J.; Lei, X. F. Synthesis of PS/Ag asymmetric hybrid particles via phase separation and self-assembly. Particuology 2013, 11, 768-775.

38

Kim, B.; Lee, T. Y.; Abbaspourrad, A.; Kim, S. H. Perforated microcapsules with selective permeability created by confined phase separation of polymer blends. Chem. Mater. 2014, 26, 7166-7171.

39

Motoyoshi, K.; Tajima, A.; Higuchi, T.; Yabu, H.; Shimomura, M. Static and dynamic control of phase separation structures in nanoparticles of polymer blends. Soft Matter 2010, 6, 1253-1257.

40

Yabu, H.; Koike, K.; Motoyoshi, K.; Higuchi, T.; Shimomura, M. A novel route for fabricating metal-polymer composite nanoparticles with phase-separated structures. Macromol. Rapid Commun. 2010, 31, 1267-1271.

41

Jin, Z. X.; Fan, H. L. Self-assembly of nanostructured block copolymer nanoparticles. Soft Matter 2014, 10, 9212-9219.

42

Skelhon, T. S.; Chen, Y. H.; Bon, S. A. F. Synthesis of "hard-soft" janus particles by seeded dispersion polymerization. Langmuir 2014, 30, 13525-13532.

43

Kim, J. W.; Cho, J.; Cho, J.; Park, B. J.; Kim, Y. J.; Choi, K. H.; Kim, J. W. Synthesis of monodisperse bi-compartmentalized amphiphilic Janus microparticles for tailored assembly at the oil-water interface. Angew. Chem., Int. Ed. 2016, 55, 4509-4513.

44

Tu, F. Q.; Lee, D. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties. J. Am. Chem. Soc. 2014, 136, 9999-10006.

45

Kobayashi, C.; Watanabe, T.; Murata, K.; Kureha, T.; Suzuki, D. Localization of polystyrene particles on the surface of poly(N-isopropylacrylamide-co-methacrylic acid) microgels prepared by seeded emulsion polymerization of styrene. Langmuir 2016, 32, 1429-1439.

46

Wen, F.; Zhang, W. Q.; Zheng, P. W.; Zhang, X.; Yang, X. L.; Wang, Y.; Jiang, X. W.; Wei, G. W.; Shi, L. Q. One-stage synthesis of narrowly dispersed polymeric core-shell microspheres. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 1192-1202.

47

Serrano-Medina, A.; Cornejo-Bravo, J.; Licea-Claveríe, A. Synthesis of pH and temperature sensitive, core-shell nano/microgels, by one pot, soap-free emulsion polymerization. J. Colloid Interface Sci. 2012, 369, 82-90.

48

Landfester, K.; Rothe, R.; Antonietti, M. Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization. Macromolecules 2002, 35, 1658-1662.

49

Yan, R.; Zhang, Y. Y.; Wang, X. H.; Xu, J. X.; Wang, D.; Zhang, W. Q. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: Whys and wherefores. J. Colloid Interface Sci. 2012, 368, 220-225.

50

Liu, Y. Y.; Liu, W.; Ma, Y. H.; Liu, L. Y.; Yang, W. T. Direct one-pot synthesis of chemically anisotropic particles with tunable morphology, dimensions, and surface roughness. Langmuir 2015, 31, 925-936.

51

Sun, Y. Y.; Yin, Y. Y.; Chen, M.; Zhou, S. X.; Wu, L. M. One-step facile synthesis of monodisperse raspberry-like P(S-MPS-AA) colloidal particles. Polym. Chem. 2013, 4, 3020-3027.

52

Fan, X. L.; Jia, X. K.; Liu, J.; Liu, Y.; Zhang, H. P.; Zhang, B. L.; Zhang, Q. Y. Morphology evolution of poly(glycidyl methacrylate) colloids in the 1, 1-diphenylethene controlled soap-free emulsion polymerization. Eur. Polym. J. 2017, 92, 220-232.

53

Soundararajan, S.; Reddy, B. S. R.; Rajadurai, S. Synthesis and characterization of glycidyl methacrylate-styrene copolymers and determination of monomer reactivity ratios. Polymer 1990, 31, 366-370.

54

Zůrková, E.; Bouchal, K.; Zdeňková, D.; Pelzbauer, Z.; Svec, F.; Kálal, J.; Batz, H. G. Preparation of monodisperse reactive styrene-glycidyl methacrylate latexes by the emulsifier-free dispersion copolymerization technique. J. Polym. Sci. : Polym. Chem. Ed. 1983, 21, 2949-2960.

55

Chapin, E. C.; Ham, G. E.; Mills, C. L. Copolymerization. VⅡ. Relative rates of addition of various monomers in copolymerization. J. Polym. Sci. 1949, 4, 597-604.

56

Hastings, G. W. Synthesis and copolymerisation of α-acrylic acids and esters. J. Chem. Soc. D: Chem. Commun. 1969, 18, 1039.

57

Huang, H.; Yuan, Q.; Shah, J. S.; Misra, R. D. K. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: Synthesis and drug delivery response. Adv. Drug Deliver. Rev. 2011, 63, 1332-1339.

58

Meng, H.; Liong, M.; Xia, T.; Li, Z. X.; Ji, Z. X.; Zink, J. I.; Nel, A. E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4, 4539-4550.

59

Gerweck, L. E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 1996, 56, 1194-1198.

60

Kim, B.; Lee, E.; Kim, Y.; Park, S.; Khang, G.; Lee, D. Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Adv. Funct. Mater. 2013, 23, 5091-5097.

61

Dan, K.; Ghosh, S. One-pot synthesis of an acid-labile amphiphilic triblock copolymer and its pH-responsive vesicular assembly. Angew. Chem., Int. Ed. 2013, 52, 7300-7305.

62

Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. Y. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc. 2010, 132, 1500-150.

File
nr-10-9-2905_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 September 2016
Revised: 11 January 2017
Accepted: 21 January 2017
Published: 01 June 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National High-tech R & D Program of China (No. 2012AA02A404), the Key Program of the National Natural Science Foundation of China (No. 51433008), the Basic Research of Northwestern Polytechnical University (Nos. 3102014JCQ01094, JC20120248 and 3102014ZD) and the 2015 Sino-Germany (CSC-DAAD) Postdoc Scholarship.

Return