Journal Home > Volume 10 , Issue 5

We propose a realistic topological p?n junction (TPNJ) by matching two Bi2Se3 (0001) slabs with opposite arrangements of planar twin boundary defects. The atomistic modeling of such a device leads to dislocation defects in the hexagonal lattice in several quintuple layers. Nevertheless, total energy calculations reveal that the interface relaxes, yielding a smooth geometrical transition that preserves the nearest-neighbors fcc-type geometry throughout these defect layers. The electronic, magnetic, and transport properties of the junction have then been calculated at the ab initio level under open boundary conditions, i.e., employing a thin-film geometry that is infinite along the electron transport direction. Indeed, a p?n junction is obtained with a built-in potential as large as 350 meV. The calculations further reveal the spin texture across the interface with unprecedented detail. As the main result, we obtain non-negligible transmission probabilities around the Γ point, which involve an electron spin-flip process while crossing the interface.


menu
Abstract
Full text
Outline
About this article

A realistic topological p–n junction at the Bi2Se3 (0001) surface based on planar twin boundary defects

Show Author's information Hugo Aramberri( )M. Carmen MuñozJorge I. Cerdá( )
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)CantoblancoMadrid28049Spain

Present address: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Barcelona 08193, Spain

Abstract

We propose a realistic topological p?n junction (TPNJ) by matching two Bi2Se3 (0001) slabs with opposite arrangements of planar twin boundary defects. The atomistic modeling of such a device leads to dislocation defects in the hexagonal lattice in several quintuple layers. Nevertheless, total energy calculations reveal that the interface relaxes, yielding a smooth geometrical transition that preserves the nearest-neighbors fcc-type geometry throughout these defect layers. The electronic, magnetic, and transport properties of the junction have then been calculated at the ab initio level under open boundary conditions, i.e., employing a thin-film geometry that is infinite along the electron transport direction. Indeed, a p?n junction is obtained with a built-in potential as large as 350 meV. The calculations further reveal the spin texture across the interface with unprecedented detail. As the main result, we obtain non-negligible transmission probabilities around the Γ point, which involve an electron spin-flip process while crossing the interface.

Keywords: electronic devices, topological insulators, spintronics, p–n junctions, twin boundaries

References(31)

1

Zhang, H. J.; Liu,C.-X.; Qi,X.-L.; Dai, X.; Fang, Z.; Zhang,S.-C. Topological insulators in Bi2Te3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

2

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

3

Ferreira, G. J.; Loss, D. Magnetically defined qubits on 3D topological insulators. Phys. Rev. Lett 2013, 111, 106802.

4

Maciejko, J.; Kim,E.-A.; Qi,X.-L. Spin Aharonov–Bohm effect and topological spin transistor. Phys. Rev. B 2010, 82, 195409.

5

Hofer, P. P.; Aramberri, H.; Schenke, C.; Delplace, P. A. L. Proposal for an ac spin current source. EPL 2014, 107, 27003.

6

Rachel, S.; Ezawa, M. Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene. Phys. Rev. B 2014, 89, 195303.

7

Wang, J.; Chen, X.; Zhu,B.-F.; Zhang,S.-C. Topological p–n junction. Phys. Rev. B 2012, 85, 235131.

8

Gao,J.-H.; Yuan, J.; Chen,W.-Q.; Zhou, Y.; Zhang,F.-C. Giant mesoscopic spin Hall effect on the surface of topological insulator. Phys. Rev. Lett. 2011, 106, 057205.

9

Habib, K. M. M.; Sajjad, R. N.; Ghosh, A. W. Chiral tunneling of topological states: Towards the efficient generation of spin current using spin-momentum locking. Phys. Rev. Lett. 2015, 114, 176801.

10

Ilan, R.; de Juan, F.; Moore, J. E. Spin-based Mach–Zehnder interferometry in topological insulator p–n junctions. Phys. Rev. Lett. 2015, 115, 096802.

11

Mi,J.-L.; Bremholm, M.; Bianchi, M.; Borup, K.; Johnsen, S.; S?ndergaard, M.; Guan, D. D.; Hatch, R. C.; Hofmann, P.; Iversen, B. B. Phase separation and bulk p–n transition in single crystals of Bi2Te3Se topological insulator. Adv. Mater. 2013, 25, 889–893.

12

Eschbach, M.; M?yńczak, E.; Kellner, J.; Kampmeier, J.; Lanius, M.; Neumann, E.; Weyrich, C.; Gehlmann, M.; Gospodari?, P.; D?ring, S. et al. Realization of a vertical topological p–n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures. Nat. Commun. 2015, 6, 8816.

13

Lanius, M.; Kampmeier, J.; Weyrich, C.; K?lling, S.; Schall, M.; Schüffelgen, P.; Neumann, E.; Luysberg, M.; Mussler, G.; Koenraad, P. M. et al. P–N junctions in ultrathin topological insulator Sb2Te3/Bi2Te3 heterostructures grown by molecular beam epitaxy. Cryst. Growth Des. 2016, 16, 2057–2061.

14

Yoshimi, R.; Tsukazaki, A.; Kikutake, K.; Checkelsky, J. G.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor. Nat. Mater. 2014, 13, 253–257.

15

Fei, F. C.; Wei, Z. X.; Wang, Q. J.; Lu, P. C.; Wang, S. B.; Qin, Y. Y.; Pan, D. F.; Zhao, B.; Wang, X. F.; Sun, J. et al. Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates. Nano Lett. 2015, 15, 5905–5911.

16

Tu, N. H.; Tanabe, Y.; Satake, Y.; Huynh, K. K.; Tanigaki, K. In-plane topological p–n junction in the three-dimensional topological insulator Bi2–x SbxTe3–y Sey. Nat. Commun. 2016, 7, 13763.

17

Aramberri, H.; Cerdá, J. I.; Mu?oz, M. C. Tunable Dirac electron and hole self-doping of topological insulators induced by stacking defects. Nano Lett. 2015, 15, 3840–3844.

18

Medlin, D. L.; Yang, N. Y. C. Interfacial step structure at a (0001) basal twin in Bi2Te3. J. Electron. Mater. 2012, 41, 1456–1464.

19

Medlin, D. L.; Ramasse, Q. M.; Spataru, C. D.; Yang, N. Y. C. Structure of the (0001) basal twin boundary in Bi2Te3. J. Appl. Phys. 2010, 108, 043517.

20

Li, H. D.; Wang, Z. Y.; Kan, X.; Guo, X.; He, H. T.; Wang, Z.; Wang, J. N.; Wong, T. L.; Wang, N.; Xie, M. H. The van der Waals epitaxy of Bi2Te3 on the vicinal Si(111) surface: An approach for preparing high-quality thin films of a topological insulator. New J. Phys. 2010, 12, 103038.

21

Jariwala, B.; Shah, D. V. Stacking fault in Bi2Te3 and Sb2Te3 single crystals. J. Cryst. Growth 2011, 318, 1179–1183.

22

Xie,M.-H.; Guo, X.; Xu,Z.-J.; Ho,W.-K. Molecular-beam epitaxy of topological insulator Bi2Te3 (111) and (221) thin films. Chin. Phys. B 2013, 22, 068101.

23

Shin, H. S.; Jeon, S. G.; Yu, J.; Kim,Y.-S.; Park, H. M.; Song, J. Y. Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires. Nanoscale 2014, 6, 6158–6165.

24

Tarakina, N. V.; Schreyeck, S.; Luysberg, M.; Grauer, S.; Schumacher, C.; Karczewski, G.; Brunner, K.; Gould, C.; Buhmann, H.; Dunin-Borkowski, R. E. et al. Suppressing twin formation in Bi2Te3 thin films. Adv. Mater. Interfaces 2014, 1, 1400134.

25

Rossen, E. T. R.; Flipse, C. F. J.; Cerdá, J. I. Lowest order in inelastic tunneling approximation: Efficient scheme for simulation of inelastic electron tunneling data. Phys. Rev. B 2013, 87, 235412.

26

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matter 2002, 14, 2745–2779.

27

Cerdá, J.; Van Hove, M. A.; Sautet, P.; Salmeron, M. Efficient method for the simulation of STM images. I. Generalized Green-function formalism. Phys. Rev. B 1997, 56, 15885–15899.

28

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

29

Ortmann, F.; Bechstedt, F.; Schmidt, W. G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 2006, 73, 205101.

30

Cuadrado, R.; Cerdá, J. I. Fully relativistic pseudopotential formalism under an atomic orbital basis: Spin-orbit splittings and magnetic anisotropies. J. Phys. : Condens. Matter 2012, 24, 086005.

31

Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 January 2017
Accepted: 19 January 2017
Published: 08 March 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness through Grant No. MAT2015-66888-C3-1R, MINECO/FEDER. We acknowledge the use of computational resources of CESGA and the i2BASQUE academic network.

Return