Journal Home > Volume 10 , Issue 8

A gold immunochromatographic sensor (GICS) was developed for the rapid detection of 26 sulfonamides in honey samples. The sensor was based on a group-specific monoclonal antibody (mAb) that can recognize all 26 sulfonamides. Three haptens (hapten 1 with a thiazole ring, hapten 2 with a benzene ring, and hapten 3 with a straight carbon chain) were used for antigen preparation. With hybridoma technology, a group-specific mAb was screened with a 50% maximal inhibitory concentration (IC50) against sulfathizole (STZ) and the other 25 analogues ranging from 0.08 to 90.18 ng/mL. Mono-dispersed gold nanoparticles were conjugated with the mAb to develop the lateral immunochromatographic strip. A labeled antibody concentration of 0.1 μg/mL and a coating antigen concentration of 0.2 μg/mL in the test line were chosen for strip preparation. Under optimized conditions, the visual limits of detection (vLOD) for the concentrations of STZ, sulfamethoxazole, sulfamethizole, sulfadiazine, sulfamerazine, sulfadimethoxine, sulfamonomethoxine, sulfameter, sulfamethoxypyridazine, and sulfachloropyridazine were 5, 0.25, 0.25, 10, 5, 10, 25, 2.5, 5, 0.25, and 10 μg/kg, respectively. Scanner analysis in honey samples revealed good performance for detection of the 26 sulfonamides. Commercial honey samples were tested with the sensor and positive results were confirmed with high-performance liquid chromatography. The proposed strip sensor provides a convenient method for the rapid and reliable determination of sulfonamides pollutants in honey samples.


menu
Abstract
Full text
Outline
About this article

Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods

Show Author's information Yanni Chen1,2Liqiang Liu1,2Liguang Xu1,2Shanshan Song1,2Hua Kuang1,2( )Gang Cui1,2Chuanlai Xu1,2
State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122China
School of Food Science and TechnologyJiangnan UniversityWuxi214122China

Abstract

A gold immunochromatographic sensor (GICS) was developed for the rapid detection of 26 sulfonamides in honey samples. The sensor was based on a group-specific monoclonal antibody (mAb) that can recognize all 26 sulfonamides. Three haptens (hapten 1 with a thiazole ring, hapten 2 with a benzene ring, and hapten 3 with a straight carbon chain) were used for antigen preparation. With hybridoma technology, a group-specific mAb was screened with a 50% maximal inhibitory concentration (IC50) against sulfathizole (STZ) and the other 25 analogues ranging from 0.08 to 90.18 ng/mL. Mono-dispersed gold nanoparticles were conjugated with the mAb to develop the lateral immunochromatographic strip. A labeled antibody concentration of 0.1 μg/mL and a coating antigen concentration of 0.2 μg/mL in the test line were chosen for strip preparation. Under optimized conditions, the visual limits of detection (vLOD) for the concentrations of STZ, sulfamethoxazole, sulfamethizole, sulfadiazine, sulfamerazine, sulfadimethoxine, sulfamonomethoxine, sulfameter, sulfamethoxypyridazine, and sulfachloropyridazine were 5, 0.25, 0.25, 10, 5, 10, 25, 2.5, 5, 0.25, and 10 μg/kg, respectively. Scanner analysis in honey samples revealed good performance for detection of the 26 sulfonamides. Commercial honey samples were tested with the sensor and positive results were confirmed with high-performance liquid chromatography. The proposed strip sensor provides a convenient method for the rapid and reliable determination of sulfonamides pollutants in honey samples.

Keywords: monoclonal antibody, sulfonamides, gold immunochromato-graphic sensor, honey samples

References(43)

1

Dmitrienko, S. G.; Kochuk, E. V.; Apyari, V. V.; Tolmacheva, V. V.; Zolotov, Y. A. Recent advances in sample preparation techniques and methods of sulfonamides detection—A review. Anal. Chim. Acta 2014, 850, 6–25.

2

Cháfer-Pericás, C.; Maquieira, á.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. TrAC-Trend. Anal. Chem. 2010, 29, 1038–1049.

3

Shao, B.; Dong, D.; Wu, Y. N.; Hu, J. Y.; Meng, J.; Tu, X. M.; Xu, S. K. Simultaneous determination of 17 sulfonamide residues in porcine meat, kidney and liver by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2005, 546, 174–181.

4

Chiesa, L. M.; Nobile, M.; Panseri, S.; Biolatti, B.; Cannizzo, F. T.; Pavlovic, R.; Arioli, F. A liquid chromatographytandem mass spectrometry method for the detection of antimicrobial agents from seven classes in calf milk replacers: Validation and application. J. Agric. Food Chem. 2016, 64, 2635–2640.

5

Font, H.; Adrian, J.; Galve, R.; Esévez, M. C.; Castellari, M.; Gratacós-Cubarsí, M.; Sánchez-Baeza, F.; Marcot, M. P. Immunochemical assays for direct sulfonamide antibiotic detection in milk and hair samples using antibody derivatized magnetic nanoparticles. J. Agric. Food Chem. 2008, 56, 736–743.

6

Chen, Y. Q.; Chen, Q.; Han, M. M.; Liu, J. Y.; Zhao, P.; He, L. D.; Zhang, Y.; Niu, Y. M.; Yang, W. J.; Zhang, L. Y. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens. Bioelectron. 2016, 79, 430–434.

7

Kujawinski, D. M.; Zhang, L. J.; Schmidt, T. C.; Jochmann, M. A. When other separation techniques fail: Compoundspecific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry. Anal. Chem. 2012, 84, 7656–7663.

8

Portolés, T.; Rosales, L. E.; Sancho, J. V.; Santos, F. J.; Moyanol, E. Gas chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization for fluorotelomer alcohols and perfluorinated sulfonamides determination. J. Chromatogr. A 2015, 1413, 107–116.

9

Bach, C.; Boiteux, V.; Hemard, J.; Colin, A.; Rosin, C.; Munoz, J. F.; Dauchy, X. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry. J. Chromatogr. A 2016, 1448, 98–106.

10

Zamora-Gálvez, A.; Ait-Lahcen, A.; Mercante, L. A.; Morales-Narváez, E.; Amine, A.; Merkoçi, A. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal. Chem. 2016, 88, 3578–3584.

11

Gu, Y.; Meng, G. W.; Wang, M. L.; Huang, Q.; Zhu, C. H.; Huang, Z. L. R6G/8-AQ co-functionalized Fe3O4@SiO2 nanoparticles for fluorescence detection of trace Hg2+ and Zn2+ in aqueous solution. Sci. China Mater. 2015, 58, 550–558.

12

Cai, M. A.; Li, F.; Zhang, Y.; Wang, Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010, 3, 557–563.

13

Huang, P.; Tu, D. T.; Zheng, W.; Zhou, S. Y.; Chen, Z.; Chen, X. Y. Inorganic lanthanide nanoprobes for backgroundfree luminescent bioassays. Sci. China Mater. 2015, 58, 156–175.

14

Li, F. H.; Bao, Y.; Wang, D. D.; Wang, W.; Niu, L. Smartphones for sensing. Sci. Bull. 2016, 61, 190–201.

15

Li, Q. L.; Ding, S. N. Double signal amplification sandwichstructured immunosensor based on TiO2 nanoparticles enhanced CdSe@ZnS qds electrochemiluminescence and the dramatic quenching effect of Au@polydopamine nanoparticles. Sci. Bull. 2016, 61, 931–938.

16

Panfilova, E.; Shirokov, A.; Khlebtsov, B.; Matora, L.; Khlebtsov, N. Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res. 2012, 5, 124–134.

17

Liu, Y. Y.; Winkler, D. A.; Epa, V. C.; Zhang, B.; Yan, B. Probing enzyme-nanoparticle interactions using combinatorial gold nanoparticle libraries. Nano Res. 2015, 8, 1293–1308.

18

Liang, X.; Ni, H. J.; Beier, R. C.; Dong, Y. N.; Li, J. Y.; Luo, X. S.; Zhang, S. X.; Shen, J. Z.; Wang, Z. H. Highly broad-specific and sensitive enzyme-linked immunosorbent assay for screening sulfonamides: Assay optimization and application to milk samples. Food Anal. Method. 2014, 7, 1992–2002.

19

Zhou, Q.; Peng, D. P.; Wang, Y. L.; Pan, Y. H.; Wan, D.; Zhang, X. Y.; Yuan, Z. H. A novel hapten and monoclonalbased enzyme-linked immunosorbent assay for sulfonamides in edible animal tissues. Food Chem. 2014, 154, 52–62.

20

Chen, M.; Wen, K.; Tao, X. Q.; Ding, S. Y.; Xie, J.; Yu, X. Z.; Li, J. C.; Xia, X.; Wang, Y.; Xie, S. L. et al. A novel multiplexed fluorescence polarisation immunoassay based on a recombinant bi-specific single-chain diabody for simultaneous detection of fluoroquinolones and sulfonamides in milk. Food Addit. Contam. Part A 2014, 31, 1959–1967.

21

Hoffmann, H.; Baldofski, S.; Hoffmann, K.; Flemig, S.; Silva, C. P.; Esteves, V. I.; Emmerling, F.; Panne, U.; Schneider, R. J. Structural considerations on the selectivity of an immunoassay for sulfamethoxazole. Talanta 2016, 158, 198–207.

22

Galarini, R.; Diana, F.; Moretti, S.; Puppini, B.; Saluti, G.; Persic, L. Development and validation of a new qualitative ELISA screening for multiresidue detection of sulfonamides in food and feed. Food Control 2014, 35, 300–310.

23

Rivas, L.; de la Escosura-Muñiz, A.; Serrano, L.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of leishmania DNA and endogenous control. Nano Res. 2015, 8, 3704–3714.

24

Wang, W. B.; Liu, L. Q.; Song, S. S.; Xu, L. G.; Kuang, H.; Zhu, J. P.; Xu, C. L. Gold nanoparticle-based strip sensor for multiple detection of twelve salmonella strains with a genus-specific lipopolysaccharide antibody. Sci. China Mater. 2016, 59, 665–674.

25

Li, X.; Song, J.; Chen, B. L.; Wang, B.; Li, R.; Jiang, H. M.; Liu, J. F.; Li, C. Z. A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles. Sci. Bull. 2016, 61, 276–281.

26

Wang, X. L.; Li, K.; Shi, D. S.; Jin, X. E.; Xiong, N.; Peng, F. H.; Peng, D. P.; Bi, D. R. Development and validation of an immunochromatographic assay for rapid detection of sulfadiazine in eggs and chickens. J. Chromatogr. B 2007, 847, 289–295.

27

Wang, L.; Wang, S.; Zhang, J. Y.; Liu, J. W.; Zhang, Y. Enzyme-linked immunosorbent assay and colloidal gold immunoassay for sulphamethazine residues in edible animal foods: Investigation of the effects of the analytical conditions and the sample matrix on assay performance. Anal. Bioanal. Chem. 2008, 390, 1619–1627.

28

Guo, Y. C.; Ngom, B.; Le, T.; Jin, X.; Wang, L. P.; Shi, D. S.; Wang, X. L.; Bi, D. G. Utilizing three monoclonal antibodies in the development of an immunochromatographic assay for simultaneous detection of sulfamethazine, sulfadiazine, and sulfaquinoxaline residues in egg and chicken muscle. Anal. Chem. 2010, 82, 7550–7555.

29

Ngom, B.; Guo, Y. C.; Jin, X. E.; Shi, D. S.; Zeng, Y.; Le, T.; Lu, F.; Wang, X. L.; Bi, D. R. Monoclonal antibody against sulfaquinoxaline and quantitative analysis in chicken tissues by competitive indirect elisa and lateral flow immunoassay. Food Agric. Immunol. 2011, 22, 1–16.

30

Liu, N.; Nie, D. X.; Han, Z.; Yang, X. L.; Zhao, Z. Y.; Shen, J. E.; Liu, G.; Wu, A. B.; Zheng, X. D. Rabbit monoclonal antibody-based lateral flow immunoassay platform for sensitive quantitation of four sulfonamide residues in milk and swine urine. Anal. Lett. 2013, 46, 286–298.

31

Shim, W. B.; Kim, J. S.; Kim, M. G.; Chung, D. H. Rapid and sensitive immunochromatographic strip for on-site detection of sulfamethazine in meats and eggs. J. Food Sci. 2013, 78, M1575-M1581.

32

Zhang, H. Y.; Duan, Z. J.; Wang, L.; Zhang, Y.; Wang, S. Hapten synthesis and development of polyclonal antibodybased multi-sulfonamide immunoassays. J. Agric. Food Chem. 2006, 54, 4499–4505.

33

Houk, K. N.; Leach, A. G.; Kim, S. P.; Zhang, X. Y. Binding affinities of host-guest, protein-ligand, and proteintransition- state complexes. Angew. Chem., Int. Ed. 2003, 42, 4872–4897.

34

Chen, Y. N.; Wang, Y. W.; Liu, L. Q.; Wu, X. L.; Xu, L. G.; Kuang, H.; Li, A. K.; Xu, C. L. A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams. Nanoscale 2015, 7, 16381–16388.

35

Peng, J.; Liu, L. Q.; Xu, L. G.; Song, S. S.; Kuang, H.; Cui, G.; Xu, C. L. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody. Nano Res. 2017, 10, 108–120.

36

Jiang, J. Q.; Wang, Z. L.; Zhang, H. T.; Zhang, X. J.; Liu, X. Y.; Wang, S. H. Monoclonal antibody-based ELISA and colloidal gold immunoassay for detecting 19-nortestosterone residue in animal tissues. J. Agric. Food Chem. 2011, 59, 9763–9769.

37

Schwartz-Duval, A. S.; Misra, S. K.; Mukherjee, P.; Johnson, E.; Acerbo, A. S.; Pan, D. P. J. An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles. Nano Res. 2016, 9, 2889–2903.

38

Zhao, L. L.; Jiang, D.; Cai, Y.; Ji, X. H.; Xie, R. G.; Yang, W. S. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 2012, 4, 5071–5076.

39

Kong, D. Z.; Liu, L. Q.; Song, S. S.; Suryoprabowo, S.; Li, A. K.; Kuang, H.; Wang, L. B.; Xu, C. L. A gold nanoparticlebased semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253.

40

Xing, C. R.; Liu, L. Q.; Song, S. S.; Feng, M.; Kuang, H.; Xu, C. L. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens. Bioelectron. 2015, 66, 445–453.

41

Peng, S.; Song, S. S.; Liu, L. Q.; Kuang, H.; Xu, C. L. Rapid enzyme-linked immunosorbent assay and immunochromatographic strip for detecting ribavirin in chicken muscles. Food Agric. Immunol. 2016, 27, 449–459.

42

Guo, J. N.; Liu, L. Q.; Xue, F.; Xing, C. R.; Song, S. S.; Kuang, H.; Xu, C. L. Development of a monoclonal antibody-based immunochromatographic strip for cephalexin. Food Agric. Immunol. 2015, 26, 282–292.

43

Kong, D. Z.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of folic acid in energy drinks and milk samples. Food Agric. Immunol. 2016, 27, 841–854.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 December 2016
Revised: 18 January 2017
Accepted: 19 January 2017
Published: 03 April 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is financially supported by the Key Programs from MOST (Nos. 2016YFD0401101 and 2016YFF0202300), the National Natural Science Foundation of China (Nos. 21631005, 21522102 and 21503095), and grants from Natural Science Foundation of Jiangsu Province, MOF and MOE (Nos. BE2016307, BK20150138, CMB21S1614, CLE02N1515 and JUSRP51715A).

Return