Journal Home > Volume 10 , Issue 12

High-capacity Li-rich cathode materials can significantly improve the energy density of lithium-ion batteries, which is the key limitation to miniaturization of electronic devices and further improvement of electrical-vehicle mileage. However, severe voltage decay hinders the further commercialization of these materials. Insights into the relationship between the inherent structural stability and external appearance of the voltage decay in high-energy Li-rich cathode materials are critical to solve this problem. Here, we demonstrate that structural evolution can be significantly inhibited by the intentional introduction of certain adventive cations (such as Ni2+) or by premeditated reservation of some of the original Li+ ions in the Li slab in the delithiated state. The voltage decay of Li-rich cathode materials over 100 cycles decreased from 500 to 90 or 40 mV upon introducing Ni2+ or retaining some Li+ ions in the Li slab, respectively. The cations in the Li slab can serve as stabilizers to reduce the repulsion between the two neighboring oxygen layers, leading to improved thermodynamic stability. Meanwhile, the cations also suppress transition metal ion migration into the Li slab, thereby inhibiting structural evolution and mitigating voltage decay. These findings provide insights into the origin of voltage decay in Li-rich cathode materials and set new guidelines for designing these materials for high-energy-density Li-ion batteries.


menu
Abstract
Full text
Outline
About this article

Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries

Show Author's information Ji-Lei Shi1,3Dong-Dong Xiao2Xu-Dong Zhang1,3Ya-Xia Yin1Yu-Guo Guo1,3( )Lin Gu2( )Li-Jun Wan1( )
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences, Beijing 100190 China
Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China

Abstract

High-capacity Li-rich cathode materials can significantly improve the energy density of lithium-ion batteries, which is the key limitation to miniaturization of electronic devices and further improvement of electrical-vehicle mileage. However, severe voltage decay hinders the further commercialization of these materials. Insights into the relationship between the inherent structural stability and external appearance of the voltage decay in high-energy Li-rich cathode materials are critical to solve this problem. Here, we demonstrate that structural evolution can be significantly inhibited by the intentional introduction of certain adventive cations (such as Ni2+) or by premeditated reservation of some of the original Li+ ions in the Li slab in the delithiated state. The voltage decay of Li-rich cathode materials over 100 cycles decreased from 500 to 90 or 40 mV upon introducing Ni2+ or retaining some Li+ ions in the Li slab, respectively. The cations in the Li slab can serve as stabilizers to reduce the repulsion between the two neighboring oxygen layers, leading to improved thermodynamic stability. Meanwhile, the cations also suppress transition metal ion migration into the Li slab, thereby inhibiting structural evolution and mitigating voltage decay. These findings provide insights into the origin of voltage decay in Li-rich cathode materials and set new guidelines for designing these materials for high-energy-density Li-ion batteries.

Keywords: cathode materials, Li-ion batteries, voltage decay, lithium-rich

References(45)

1

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

3

Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.

4

Liu, W.; Oh, P.; Liu, X. E.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.

5

Croy, J. R.; Balasubramanian, M.; Gallagher, K. G.; Burrell, A. K. Review of the U. S. department of energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 2015, 48, 2813–2821.

6

Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

7

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167– 1176.

8

Manthiram, A.; Knight, J. C.; Myung, S. -T.; Oh, S. -M.; Sun, Y. -K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 2016, 6, 1501010.

9

Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469–477.

10

Jiang, K. C.; Wu, X. L.; Yin, Y. X.; Lee, J. S.; Kim, J.; Guo, Y. G. Superior hybrid cathode material containing lithium- excess layered material and graphene for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4858–4863.

11

Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, A191–A194.

12

Yu, H. J.; Zhou, H. S. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 2013, 4, 1268–1280.

13

Feng, X.; Yang, Z. Z.; Tang, D. C.; Kong, Q. Y.; Gu, L.; Wang, Z. X.; Chen, L. Q. Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys. Chem. Chem. Phys. 2015, 17, 1257–1264.

14

Ma, J.; Zhou, Y. N.; Gao, Y. R.; Yu, X. Q.; Kong, Q. Y.; Gu, L.; Wang, Z. X.; Yang, X. Q.; Chen, L. Q. Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem. Mater. 2014, 26, 3256–3262.

15

Liu, J. L.; Hou, M. Y.; Yi, J.; Guo, S. S.; Wang, C. X.; Xia, Y. Y. Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ. Sci. 2014, 7, 705–714.

16

Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 2002, 149, A778–A791.

17

Zheng, J. M.; Gu, M.; Genc, A.; Xiao, J.; Xu, P. H.; Chen, X. L.; Zhu, Z. H.; Zhao, W. B.; Pullan, L.; Wang, C. M. et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014, 14, 2628–2635.

18

Shukla, A. K.; Ramasse, Q. M.; Ophus, C.; Duncan, H.; Hage, F.; Chen, G. Y. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nat. Commun. 2015, 6, 8711.

19

Liu, W.; Oh, P.; Liu, X. E.; Myeong, S.; Cho, W.; Cho, J. Countering voltage decay and capacity fading of lithium- rich cathode material at 60 ℃ by hybrid surface protection layers. Adv. Energy Mater. 2015, 5, 1500274.

20

Hong, J.; Gwon, H.; Jung, S. K.; Ku, K.; Kang, K. Review— Lithium-excess layered cathodes for lithium rechargeable batteries. J. Electrochem. Soc. 2015, 162, A2447–A2467.

21

Rozier, P.; Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges. J. Electrochem. Soc. 2015, 162, A2490–A2499.

22

Qing, R. P.; Shi, J. L.; Zhai, Y. B.; Zhang, X. D.; Yin, Y. X.; Gu, L.; Guo, Y. G. Synthesis and electrochemical properties of a high capacity Li-rich cathode material in molten KCl-Na2CO3 flux. Electrochim. Acta 2016, 196, 749–755.

23

Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

24

Ko, M.; Oh, P.; Chae, S.; Cho, W.; Cho, J. Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications. Small 2015, 11, 4058–4073.

25

Yan, P. F.; Nie, A. M.; Zheng, J. M.; Zhou, Y. G.; Lu, D. P.; Zhang, X. F.; Xu, R.; Belharouak, I.; Zu, X. T.; Xiao, J. et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 2015, 15, 514–522.

26

Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.

27

Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 2015, 14, 230–238.

28

Fan, L. J.; Tang, D. C.; Wang, D. Y.; Wang, Z. X.; Chen, L. Q. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Res. 2016, 9, 3903–3913.

29

Shi, J. L.; Zhang, J. N.; He, M.; Zhang, X. D.; Yin, Y. X.; Li, H.; Guo, Y. G.; Gu, L.; Wan, L. J. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 20138–20146.

30

Jiang, K. C.; Xin, S.; Lee, J. S.; Kim, J.; Xiao, X. L.; Guo, Y. G. Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys. Chem. Chem. Phys. 2012, 14, 2934–2939.

31

Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and inter­faceissues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.

32

Xu, G. J.; Liu, Z. H.; Zhang, C. J.; Cui, G. L.; Chen, L. Q. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 2015, 3, 4092–4123.

33

Zhou, L.; Zhao, D. Y.; Lou, X. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 239–241.

34

Jiang, Y.; Tian, R. Y.; Liu, H. Q.; Chen, J. K.; Tan, X. H.; Zhang, L.; Liu, G. Y.; Wang, H. F.; Sun, L. F.; Chu, W. G. Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for high- power lithium-ion batteries. Nano Res. 2015, 8, 3803–3814.

35

Wang, Y. Q.; Yang, Z. Z.; Qian, Y. M.; Gu, L.; Zhou, H. S. New insights into improving rate performance of lithium-rich cathode material. Adv. Mater. 2015, 27, 3915–3920.

36

Yu, X. Q.; Lyu, Y.; Gu, L.; Wu, H. M.; Bak, S. -M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. -W. et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.

37

Wei, Z.; Zhang, W.; Wang, F.; Zhang, Q.; Qiu, B.; Han, S. J.; Xia, Y. G.; Zhu, Y. M.; Liu, Z. P. Eliminating voltage decay of lithium-rich Li1.14Mn0.54Ni0.14Co0.14O2 cathodes by controlling the electrochemical process. Chem. —Eur. J. 2015, 21, 7503–7510.

38

Ma, J.; Zhou, Y. N.; Gao, Y. R.; Kong, Q. Y.; Wang, Z. X.; Yang, X. Q.; Chen, L. Q. Molybdenum substitution for improving the charge compensation and activity of Li2MnO3. Chem. —Eur. J. 2014, 20, 8723–8730.

39

Zhang, J. W.; Guo, X.; Yao, S. M.; Qiu, X. P. High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries. Sci. China Chem. 2016, 59, 1479–1485.

40

Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 2016, 6, 1502398.

41

Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 2013, 4, 2985.

42

Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 2016, 9, 3735–3746.

43

Rahman, M. M.; Sadek, A. Z.; Sultana, I.; Srikanth, M.; Dai, X. J.; Field, M. R.; McCulloch, D. G.; Ponraj, S. B.; Chen, Y. Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a high- performance lithium-ion-battery cathode. Nano Res. 2015, 8, 3591–3603.

44

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

45

You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. -W.; Guo, Y. -G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 November 2016
Revised: 17 January 2017
Accepted: 19 January 2017
Published: 26 April 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202500), the National Natural Science Foundation of China (Nos. 51225204 and 21127901), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDA09010000).

Return