Journal Home > Volume 10 , Issue 8

The probe-assisted integration of imaging and therapy into a single modality offers significant advantages in bio-applications. As a newly developed photoacoustic (PA) mechanism, plasmon-mediated nanocavitation, whereby photons are effectively converted into PA shockwaves, has excellent advantages for image-guided therapy. In this study, by simulating the laser absorption, temperature field, and nanobubble dynamics using both finite-element analysis and computational fluid dynamics, we quantified the cavitation-induced PA conversion efficiency of a water-immersed gold nanosphere, revealing new insights. Interestingly, sequential multi-bubble emission accompanied by high PA signal production occur under a single high-dose pulse of laser irradiation, enabling a cavitation-induced PA conversion efficiency up to 2%, which is ~50 times higher than that due to thermal expansion. The cavitation-induced PA signal has unique frequency characteristics, which may be useful for a new approach for in vivo nanoparticle tracking. Our work offers theoretical guidance for accurate diagnosis and controllable therapy based on plasmon-mediated nanocavitation.


menu
Abstract
Full text
Outline
About this article

New insight into photoacoustic conversion efficiency by plasmon-mediated nanocavitation: Implications for precision theranostics

Show Author's information Yujiao ShiSihua Yang( )Da Xing( )
Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life ScienceCollege of Biophotonics, South China Normal UniversityGuangzhou510631China

Abstract

The probe-assisted integration of imaging and therapy into a single modality offers significant advantages in bio-applications. As a newly developed photoacoustic (PA) mechanism, plasmon-mediated nanocavitation, whereby photons are effectively converted into PA shockwaves, has excellent advantages for image-guided therapy. In this study, by simulating the laser absorption, temperature field, and nanobubble dynamics using both finite-element analysis and computational fluid dynamics, we quantified the cavitation-induced PA conversion efficiency of a water-immersed gold nanosphere, revealing new insights. Interestingly, sequential multi-bubble emission accompanied by high PA signal production occur under a single high-dose pulse of laser irradiation, enabling a cavitation-induced PA conversion efficiency up to 2%, which is ~50 times higher than that due to thermal expansion. The cavitation-induced PA signal has unique frequency characteristics, which may be useful for a new approach for in vivo nanoparticle tracking. Our work offers theoretical guidance for accurate diagnosis and controllable therapy based on plasmon-mediated nanocavitation.

Keywords: theranostics, photoacoustic imaging, conversion efficiency, nanocavitation

References(48)

1

Bell, A. G. On the production and reproduction of sound by light. Am. J. Sci. 1880, 20, 305–324.

2

Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851.

3

Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

4

Xiang, L. Z; Wang, B.; Ji, L. J.; Jiang, H. B. 4-D photoacoustic tomography. Sci. Rep. 2013, 3, 1113.

5

Kruger, R. A.; Lam, R. B.; Reinecke, D. R.; Del Rio, S. P.; Doyle, R. P. Photoacoustic angiography of the breast. Med. Phys. 2010, 37, 6096–6100.

6

Fang, H.; Maslov, K.; Wang, L. V. Photoacoustic Doppler effect from flowing small light-absorbing particles. Phys. Rev. Lett. 2007, 99, 184501

7

Liu, Y. Y.; Yang, X. Q.; Zhu, D.; Shi, R.; Luo, Q. M. Optical clearing agents improve photoacoustic imaging in the optical diffusive regime. Opt. Lett. 2013, 38, 4236–4239.

8

Oraevsky, A. A.; Jacques, S. L.; Tittel, F. K. Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl. Opt. 1997, 36, 402–415.

9

Zhang, E. Z.; Laufer, J. G.; Pedley, R. B.; Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 2009, 54, 1035–1046.

10

Zhang, J.; Yang, S. H.; Ji, X. R.; Zhou, Q.; Xing, D. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: Ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation. J. Am. Coll. Cardiol. 2014, 64, 385–390.

11

Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.

12

Yang, S. H.; Xing, D.; Zhou, Q.; Xiang, L. Z.; Lao, Y. Q. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 2007, 34, 3294–3301.

13

Galanzha, E. I.; Shashkov, E. V.; Spring, P. M.; Suen, J. Y.; Zharov, V. P. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009, 69, 7926–7934.

14

Jiang, Y. Y.; Deng, Z. J.; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L.; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.

15

De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.

16

Chen, Y. S.; Frey, W.; Aglyamov, S.; Emelianov, S. Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small 2012, 8, 47–52.

17

Kim, C.; Favazza, C.; Wang, L. V. In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths. Chem. Rev. 2010, 110, 2756–2782.

18

Wang, L.; Yang, P. P.; Zhao, X. X.; Wang, H.; Self-assembled nanomaterials for photoacoustic imaging. Nanoscale 2016, 8, 2488-2509.

19

Ray, A.; Wang, X. D.; Lee, Y. E. K.; Hah, H. J.; Kim, G.; Chen, T.; Orringer, D. A.; Sagher, O.; Liu, X. J.; Kopelman, R. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 2011, 4, 1163–1173.

20

Wang, Y. H.; Liao, A. H.; Chen, J. H.; Wang, C. R. C.; Li, P. C. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J. Biomed. Opt. 2012, 17, 045001.

21

Wei, W.; Li, X.; Zhou, Q. F.; Shung, K. K.; Chen, Z. P. Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging. J. Biomed. Opt. 2011, 16, 106001.

22

Liu, Y.; Yin, J. J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719–1730.

23

Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618.

24

Dixon, A. J.; Hu, S.; Klibanov, A. L.; Hossack, J. A. Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small 2015, 11, 3066–3077.

25

Kang, B.; Yu, D. C.; Dai, Y. D.; Chang, S. Q.; Chen, D.; Ding, Y. T. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as "Bomb" agents. Small 2009, 5, 1292–1301.

26

Zhou, F. F.; Wu, S. N.; Yuan, Y.; Chen, W. R.; Xing, D. Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small 2012, 8, 1543–1550.

27

Zhong, J. P.; Yang, S. H.; Wen, L. W.; Xing, D. Imagingguided photoacoustic drug release and synergistic chemophotoacoustic therapy with paclitaxel-containing nanoparticles. J. Control. Release 2016, 226, 77–87.

28

von Maltzahn, G.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69, 3892–3900.

29

Rothstein, J. P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 2010, 42, 89–109.

30

O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171–176.

31

Groeneveld, R. H.; Sprik, R.; Lagendijk, A. Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au. Phys. Rev. B 1995, 51, 11433.

32

Furlani, E. P.; Karampelas, I. H.; Xie, Q. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. Lab Chip 2012, 12, 3707–3719.

33

Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

34

Hatef, A.; Darvish, B.; Dagallier, A.; Davletshin, Y. R.; Johnston, W.; Kumaradas, J. C.; Rioux, D.; Meunier, M. Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J. Phys. Chem. C 2015, 119, 24075–24080.

35

Calasso, I. G.; Craig, W.; Diebold, G. J. Photoacoustic point source. Phys. Rev. Lett. 2001, 86, 3550–3553.

36

Menger, F. M. Laplace pressure inside micelles. J. Phys. Chem. 1979, 83, 893.

37

Pan, H. H.; Ritter, J. A.; Balbuena, P. B. Examination of the approximations used in determining the isosteric heat of adsorption from the Clausius–Clapeyron equation. Langmuir 1998, 14, 6323–6327.

38

Prosperetti, A. A generalization of the Rayleigh–Plesset equation of bubble dynamics. Phys. Fluids 1982, 25, 409–410.

39

Chorin, A. J. Numerical solution of the Navier–Stokes equations. Math. Comput. 1968, 22, 745–762.

40

Pelivanov, I. M.; Kopylova, D. S.; Podymova, N. B.; Karabutov, A. A. Optoacoustic method for determination of submicron metal coating properties: Theoretical consideration. J. Appl. Phys. 2009, 106, 013507.

41

Samara, G. A.; Morosin, B. Anharmonic effects in KTaO3: Ferroelectric mode, thermal expansion, and compressibility. Phys. Rev. B 1973, 8, 1256–1264.

42

Shi, Y. J.; Qin, H.; Yang, S. H.; Xing, D. Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes. Nano Res. 2016, 9, 3644–3655.

43

Albanese, A.; Chan, W. C. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011, 5, 5478–5489.

44

Hatef, A.; Meunier, M. Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water. Opt. Express 2015, 23, 1967–1980.

45

Buffat, P.; Borel, J. P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298.

46

Koga, K.; Ikeshoji, T.; Sugawara, K. I. Size- and temperaturedependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 2004, 92, 115507.

47

Boulais, é.; Lachaine, R.; Meunier, M. Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water. J. Phys. Chem. C 2013, 117, 9386–9396.

48

Brujan, E. A. Stress wave emission from plasmonic nanobubbles. J. Phys. D: Appl. Phys. 2016, 50, 015304.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2016
Revised: 10 January 2017
Accepted: 14 January 2017
Published: 06 May 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 81630046, 61627827, 61331001, 91539127, and 11604105), the Science and Technology Planning Project of Guangdong Province (Nos. 2015B020233016, 2014B020215003 and 2014A020215031), and the Distinguished Young Teacher Project in Higher Education of Guangdong (No. YQ2015049).

Return