Journal Home > Volume 10 , Issue 8

The in situ synthesis of mesoporous nanotubes from natural minerals remains a great challenge. Herein, we report the successful synthesis of mesoporous silica nanotubes (MNTs) with a varying inner-shell thickness and a preserved clay outer shell from natural-halloysite nanotubes (HNTs). After the enlargement of the lumen diameter of the tubular aluminosilicate clay by acid leaching, uniform mesopores were introduced by a modified pseudomorphic transformation approach, while the clay outer shell was well-preserved. Using density functional theory calculations, the atomic structure evolution and the energetics during Al leaching and Si–OH condensation were studied in detail. After the leaching of Al ions from the HNTs, local structural changes from Al(Oh) to Al(V) at a medium leaching level and to Al(Td) at a high leaching level were confirmed. The calculated hydroxylation energy of two kinds of silica components in the acid-leached HNTs (the distorted two-dimensional silica source in the inner shell and the intact aluminosilicate structure in the outer shell) was 0.5 eV lower or 1.0 eV higher than that of bulk silica, which clarifies the different behavior of the silica components in the hydrothermal process. The successful synthesis of reactive MNTs from HNTs introduces a new strategy for the synthesis of mesoporous nanocontainers with a special morphology using natural minerals. In particular, MNT samples with numerous reactive Al(V) species and a specific surface area up to 583 m2/g (increased by a factor of 10) are promising drug-loading nanocontainers and nanoreactors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering a tubular mesoporous silica nanocontainer with well-preserved clay shell from natural halloysite

Show Author's information Liangjie Fu1,2Huaming Yang1,3( )Aidong Tang4Yuehua Hu1,3( )
Centre for Mineral MaterialsSchool of Minerals Processing and Bioengineering, Central South UniversityChangsha410083China
Peter A. Rock Thermochemistry Laboratory and NEAT ORUUniversity of California Davis, One Shields AvenueDavis, CA95616USA
Hunan Key Lab of Mineral Materials & ApplicationChangsha410083China
School of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China

Abstract

The in situ synthesis of mesoporous nanotubes from natural minerals remains a great challenge. Herein, we report the successful synthesis of mesoporous silica nanotubes (MNTs) with a varying inner-shell thickness and a preserved clay outer shell from natural-halloysite nanotubes (HNTs). After the enlargement of the lumen diameter of the tubular aluminosilicate clay by acid leaching, uniform mesopores were introduced by a modified pseudomorphic transformation approach, while the clay outer shell was well-preserved. Using density functional theory calculations, the atomic structure evolution and the energetics during Al leaching and Si–OH condensation were studied in detail. After the leaching of Al ions from the HNTs, local structural changes from Al(Oh) to Al(V) at a medium leaching level and to Al(Td) at a high leaching level were confirmed. The calculated hydroxylation energy of two kinds of silica components in the acid-leached HNTs (the distorted two-dimensional silica source in the inner shell and the intact aluminosilicate structure in the outer shell) was 0.5 eV lower or 1.0 eV higher than that of bulk silica, which clarifies the different behavior of the silica components in the hydrothermal process. The successful synthesis of reactive MNTs from HNTs introduces a new strategy for the synthesis of mesoporous nanocontainers with a special morphology using natural minerals. In particular, MNT samples with numerous reactive Al(V) species and a specific surface area up to 583 m2/g (increased by a factor of 10) are promising drug-loading nanocontainers and nanoreactors.

Keywords: hydrothermal synthesis, density functional theory (DFT) calculation, nanocontainer, halloysite, mesoporous nanotubes, acid leaching

References(63)

1

Zhang, K.; Xu, L. L.; Jiang, J. G.; Calin, N.; Lam, K. F.; Zhang, S. J.; Wu, H. H.; Wu, G. D.; Albela, B.; Bonneviot, L. et al. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 2013, 135, 2427–2430.

2

Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core–shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503–2514.

3

Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115–123.

4

Mao, C. B.; Wang, F. K.; Cao, B. R. Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages. Angew. Chem., Int. Ed. 2012, 51, 6411–6415.

5

Obare, S. O.; Jana, N. R.; Murphy, C. J. Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett. 2001, 1, 601–603.

6

Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

7

Kang, D. Y.; Brunelli, N. A.; Yucelen, G. I.; Venkatasubramanian, A.; Zang, J.; Leisen, J.; Hesketh, P. J.; Jones, C. W.; Nair, S. Direct synthesis of single-walled aminoaluminosilicate nanotubes with enhanced molecular adsorption selectivity. Nat. Commun. 2014, 5, 3342.

8

Martin, C. R.; Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2, 29–37.

9

Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 2007, 46, 7548–7558.

10

Yu, J.; Yang, C.; Li, J.; Ding, Y. C.; Zhang, L.; Yousaf, M. Z.; Lin, J.; Pang, R.; Wei, L. B.; Xu, L. L. et al. Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 2014, 26, 4114–4120.

11

Molina, E.; Warnant, J.; Mathonnat, M.; Bathfield, M.; In, M.; Laurencin, D.; Jéroîme, C.; Lacroix-Desmazes, P.; Marcotte, N.; Gé rardin, C. Drug-polymer electrostatic complexes as new structuring agents for the formation of drug-loaded ordered mesoporous silica. Langmuir 2015, 31, 12839–12844.

12

Zhou, X. J.; Moran-Mirabal, J. M.; Craighead, H. G.; McEuen, P. L. Supported lipid bilayer/carbon nanotube hybrids. Nat. Nanotechnol. 2007, 2, 185–190.

13

Charlier, J. C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732.

14

Han, W. Q.; Yu, H. G.; Zhi, C. Y.; Wang, J. B.; Liu, Z. X.; Sekiguchi, T.; Bando, Y. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett. 2008, 8, 491–494.

15

Deng, S. Z.; Fan, H. M.; Wang, M.; Zheng, M. R.; Yi, J. B.; Wu, R. Q.; Tan, H. R.; Sow, C. H.; Ding, J.; Feng, Y. P. et al. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature. ACS Nano 2010, 4, 495–505.

16

Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals—A review. Clay Miner. 2005, 40, 383–426.

17

Lvov, Y.; Wang, W. C.; Zhang, L. Q.; Fakhrullin, R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016, 28, 1227–1250.

18

Wang, J. H.; Zhang, X.; Zhang, B.; Zhao, Y. F.; Zhai, R.; Liu, J. D.; Chen, R. F. Rapid adsorption of Cr(Ⅵ) on modified halloysite nanotubes. Desalination 2010, 259, 22–28.

19

Luo, P.; Zhang, J. S.; Zhang, B.; Wang, J. H.; Zhao, Y. F.; Liu, J. D. Preparation and characterization of silane coupling agent modified halloysite for Cr(Ⅵ) removal. Ind. Eng. Chem. Res. 2011, 50, 10246–10252.

20

Abdullayev, E.; Joshi, A.; Wei, W. B.; Zhao, Y. F.; Lvov, Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 2012, 6, 7216–7226.

21

Yuan, P.; Southon, P. D.; Liu, Z. W.; Kepert, C. J. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release. Nanotechnology 2012, 23, 375705.

22

Lvov, Y. M.; Shchukin, D. G.; Möhwald, H.; Price, R. R. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2008, 2, 814–820.

23

Abdullayev, E.; Price, R.; Shchukin, D.; Lvov, Y. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl. Mater. Interfaces 2009, 1, 1437–1443.

24

Shchukin, D. G.; Sukhorukov, G. B.; Price, R. R.; Lvov, Y. M. Halloysite nanotubes as biomimetic nanoreactors. Small 2005, 1, 510–513.

25

Du, M. L.; Guo, B. C.; Jia, D. M. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582.

26

Yah, W. O.; Takahara, A.; Lvov, Y. M. Selective modification of halloysite lumen with octadecylphosphonic acid: New inorganic tubular micelle. J. Am. Chem. Soc. 2012, 134, 1853–1859.

27

Zhai, R.; Zhang, B.; Liu, L.; Xie, Y. D.; Zhang, H. Q.; Liu, J. D. Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal. Commun. 2010, 12, 259–263.

28

Zhang, Y.; He, X.; Ouyang, J.; Yang, H. M. Palladium nanoparticles deposited on silanized halloysite nanotubes: Synthesis, characterization and enhanced catalytic property. Sci. Rep. 2013, 3, 2948.

29

Yu, Y. T.; Qiu, H. B.; Wu, X. W.; Li, H. C.; Li, Y. S.; Sakamoto, Y.; Inoue, Y.; Sakamoto, K.; Terasaki, O.; Che, S. Synthesis and characterization of silica nanotubes with radially oriented mesopores. Adv. Funct. Mater. 2008, 18, 541–550.

30

Zhang, A. F.; Hou, K. K.; Gu, L.; Dai, C. Y.; Liu, M.; Song, C. S.; Guo, X. W. Synthesis of silica nanotubes with orientation controlled mesopores in porous membranes via interfacial growth. Chem. Mater. 2012, 24, 1005–1010.

31

White, R. D.; Bavykin, D. V; Walsh, F. C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions. Nanotechnology 2012, 23, 065705.

32

Zhang, A. B.; Pan, L.; Zhang, H. Y.; Liu, S. T.; Ye, Y.; Xia, M. S.; Chen, X. G. Effects of acid treatment on the physicochemical and pore characteristics of halloysite. Colloid. Surf. A: Physicochem. Eng. Asp. 2012, 396, 182–188.

33

Joo, Y.; Sim, J. H.; Jeon, Y.; Lee, S. U.; Sohn, D. Opening and blocking the inner-pores of halloysite. Chem. Commun. 2013, 49, 4519–4521.

34

Ouyang, J.; Guo, B. B.; Fu, L. J.; Yang, H. M.; Hu, Y. H.; Tang, A. D.; Long, H. M.; Jin, Y. L.; Chen, J.; Jiang, J. L. Radical guided selective loading of silver nanoparticles at interior lumen and out surface of halloysite nanotubes. Mater. Des. 2016, 110, 169–178.

35

Zhang, Y.; Fu, L. J.; Yang, H. M. Insights into the physicochemical aspects from natural halloysite to silica nanotubes. Colloid. Surf. A: Physicochem. Eng. Asp. 2012, 414, 115–119.

36

Xie, Y. L.; Zhang, Y.; Ouyang, J.; Yang, H. M. Mesoporous material Al-MCM-41 from natural halloysite. Phys. Chem. Miner. 2014, 41, 497–503.

37

Yang, H. M.; Tang, A. D.; Ouyang, J.; Li, M.; Mann, S. From natural attapulgite to mesoporous materials: Methodology, characterization and structural evolution. J. Phys. Chem. B 2010, 114, 2390–2398.

38

Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875.

39

Galarneau, A.; Iapichella, J.; Bonhomme, K.; Di Renzo, F.; Kooyman, P.; Terasaki, O.; Fajula, F. Controlling the morphology of mesostructured silicas by pseudomorphic transformation: A route towards applications. Adv. Funct. Mater. 2006, 16, 1657–1667.

40

MacKenzie, K. J. D.; Smith, M. E. Multinuclear Solid-State NMR of Inorganic Materials; Pergamon: London, 2002.

41

Navrotsky, A. Thermochemistry of nanomaterials. Rev. Mineral. Geochem. 2001, 44, 73–103.

42

Sahu, S. K.; Unruh, D. K.; Forbes, T. Z.; Navrotsky, A. Energetics of formation and hydration of a porous metal organic nanotube. Chem. Mater. 2014, 26, 5105–5112.

43

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

44

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

45

Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

46

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

47

Guimarães, L.; Enyashin, A. N.; Seifert, G.; Duarte, H. A. Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J. Phys. Chem. C 2010, 114, 11358–11363.

48

Ashbrook, S. E.; McManus, J.; MacKenzie, K. J. D.; Wimperis, S. Multiple-quantum and cross-polarized 27Al MAS NMR of mechanically treated mixtures of kaolinite and gibbsite. J. Phys. Chem. B 2000, 104, 6408–6416.

49

Du, C. F.; Yang, H. M. Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. J. Colloid Interface Sci. 2012, 369, 216–222.

50

Tunega, D.; Bucko, T.; Zaoui, A. Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections. J. Chem. Phys. 2012, 137, 114105.

51

Peng, K.; Fu, L. J.; Ouyang, J.; Yang, H. M. Emerging parallel dual 2D composites: Natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 2016, 26, 2666–2675.

52

Tosoni, S.; Doll, K.; Ugliengo, P. Hydrogen bond in layered materials: Structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chem. Mater. 2006, 18, 2135–2143.

53

Ugliengo, P.; Zicovich-Wilson, C. M.; Tosoni, S.; Civalleri, B. Role of dispersive interactions in layered materials: A periodic B3LYP and B3LYP-D* study of Mg(OH)2, Ca(OH)2 and kaolinite. J. Mater. Chem. 2009, 19, 2564–2572.

54

Bish, D. L. Rietveld refinement of the kaolinite structure at 1.5 K. Clays Clay Miner. 1993, 41, 738–744.

55

Neder, R. B.; Burghammer, M.; Grasl, T. H.; Schulz, H.; Bram, A.; Fiedler, S. Refinement of the kaolinite structure from single-crystal synchrotron data. Clays Clay Miner. 1999, 47, 487–494.

56

Shivaramaiah, R.; Navrotsky, A. Energetics of order–disorder in layered magnesium aluminum double hydroxides with interlayer carbonate. Inorg. Chem. 2015, 54, 3253–3259.

57

Nisar, J.; Århammar, C.; Jämstorp, E.; Ahuja, R. Optical gap and native point defects in kaolinite studied by the GGA-PBE, HSE functional, and GW approaches. Phys. Rev. B 2011, 84, 075120.

58

Yang, H. M.; Li, M.; Fu, L. J.; Tang, A. D.; Mann, S. Controlled assembly of Sb2S3 nanoparticles on silica/polymer nanotubes: Insights into the nature of hybrid interfaces. Sci. Rep. 2013, 3, 1336.

59

Bian, S. W.; Ma, Z.; Zhang, L. S.; Niu, F.; Song, W. G. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chem. Commun. 2009, 1261–1263.

60

Zhang, Y. H.; Liu, X. Y.; Huang, J. G. Hierarchical mesoporous silica nanotubes derived from natural cellulose substance. ACS Appl. Mater. Interfaces 2011, 3, 3272–3275.

61

Temuujin, J.; Okada, K.; MacKenzie, K. J. D.; Jadambaa, T. The effect of water vapour atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR. J. Eur. Ceram. Soc. 1999, 19, 105–112.

62

Datt, A.; El-Maazawi, I.; Larsen, S. C. Aspirin loading and release from MCM-41 functionalized with aminopropyl groups via co-condensation or postsynthesis modification methods. J. Phys. Chem. C 2012, 116, 18358–18366.

63

Datt, A.; Fields, D.; Larsen, S. C. An experimental and computational study of the loading and release of aspirin from zeolite HY. J. Phys. Chem. C 2012, 116, 21382–21390.

File
nr-10-8-2782_ESM.pdf (5.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 November 2016
Revised: 23 December 2016
Accepted: 14 January 2017
Published: 22 April 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41572036 and 51225403), the Hunan Provincial Science and Technology Project (Nos. 2016RS2004 and 2015TP1006) and the National "Ten Thousand Talents Program" in China. Computing resources were provided by High Performance Computing Centre of Central South University and the National Supercomputing Center of China in Shenzhen. We acknowledge Yalin Xia, Huilin Lun and Binbin Guo for their kind help in sample preparation, characterization and drug loading experiment.

Return