Journal Home > Volume 10 , Issue 8

Molybdenum ditelluride (MoTe2), which is an important transition-metal dichalcogenide, has attracted considerable interest owing to its unique properties, such as its small bandgap and large Seebeck coefficient. However, the batch production of monolayer MoTe2 has been rarely reported. In this study, we demonstrate the synthesis of large-domain (edge length exceeding 30 μm), monolayer MoTe2 from chemical vapor deposition-grown monolayer MoS2 using a chalcogen atom-exchange synthesis route. An in-depth investigation of the tellurization process reveals that the substitution of S atoms by Te is prevalently initiated at the edges and grain boundaries of the monolayer MoS2, which differs from the homogeneous selenization of MoS2 flakes with the formation of alloyed Mo-S-Se hybrids. Moreover, we detect a large compressive strain (approximately -10%) in the transformed MoTe2 lattice, which possibly drives the phase transition from 2H to 1T' at the reaction temperature of 500 ℃. This phase change is substantiated by experimental facts and first-principles calculations. This work introduces a novel route for the templated synthesis of two-dimensional layered materials through atom substitutional chemistry and provides a new pathway for engineering the strain and thus the intriguing physics and chemistry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route

Show Author's information Qiyi Fang1,2,§Zhepeng Zhang1,2,§Qingqing Ji2,§Siya Zhu1,3Yue Gong4,5,6Yu Zhang1,2Jianping Shi1,2Xiebo Zhou1,2Lin Gu4,5,6Qian Wang3,1Yanfeng Zhang1,2( )
Department of Materials Science and EngineeringCollege of Engineering, Peking UniversityBeijing100871China
Center for Nanochemistry (CNC)Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
Center for Applied Physics and TechnologyPeking UniversityBeijing100871China
Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190China
Collaborative Innovation Center of Quantum MatterBeijing100190China
School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China

§These authors contributed equally to this work.

Abstract

Molybdenum ditelluride (MoTe2), which is an important transition-metal dichalcogenide, has attracted considerable interest owing to its unique properties, such as its small bandgap and large Seebeck coefficient. However, the batch production of monolayer MoTe2 has been rarely reported. In this study, we demonstrate the synthesis of large-domain (edge length exceeding 30 μm), monolayer MoTe2 from chemical vapor deposition-grown monolayer MoS2 using a chalcogen atom-exchange synthesis route. An in-depth investigation of the tellurization process reveals that the substitution of S atoms by Te is prevalently initiated at the edges and grain boundaries of the monolayer MoS2, which differs from the homogeneous selenization of MoS2 flakes with the formation of alloyed Mo-S-Se hybrids. Moreover, we detect a large compressive strain (approximately -10%) in the transformed MoTe2 lattice, which possibly drives the phase transition from 2H to 1T' at the reaction temperature of 500 ℃. This phase change is substantiated by experimental facts and first-principles calculations. This work introduces a novel route for the templated synthesis of two-dimensional layered materials through atom substitutional chemistry and provides a new pathway for engineering the strain and thus the intriguing physics and chemistry.

Keywords: multiphase, phase transformation, MoTe2, transition-metal dichacogenide, atom exchange

References(46)

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

2

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

3

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

4

Shi, J. P.; Ma, D. L.; Han, G. -F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

5

Balendhran, S.; Walia, S.; Nili, H.; Ou, J. Z.; Zhuiykov, S.; Kaner, R. B.; Sriram, S.; Bhaskaran, M.; Kalantar-Zadeh, K. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952–3970.

6

Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231–6236.

7

Duerloo, K. -A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

8

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. -H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

9

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

10

Gong, Z. R.; Liu, G. -B.; Yu, H. Y.; Xiao, D.; Cui, X. D.; Xu, X. D.; Yao, W. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 2013, 4, 2053.

11

Kane, C. L.; Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

12

Huang, L.; McCormick, T. M.; Ochi, M.; Zhao, Z. Y.; Suzuki, M. -T.; Arita, R.; Wu, Y.; Mou, D. X.; Cao, H. B.; Yan, J. Q. et al. Spectroscopic evidence for a type Ⅱ Weyl semimetallic state in MoTe2. Nat. Mater. 2016, 15, 1155–1160.

13

Deng, K.; Wan, G. L.; Deng, P.; Zhang, K. N.; Ding, S. J.; Wang, E. Y.; Yan, M. Z.; Huang, H. Q.; Zhang, H. Y.; Xu, Z. L. et al. Experimental observation of topological Fermi arcs in type-Ⅱ Weyl semimetal MoTe2. Nat. Phys. 2016, 12, 1105–1110.

14

Park, J. C.; Yun, S. J.; Kim, H.; Park, J. -H.; Chae, S. H.; An, S. -J.; Kim, J. -G.; Kim, S. M.; Kim, K. K.; Lee, Y. H. Phase-engineered synthesis of centimeter-scale 1T′- and 2H-molybdenum ditelluride thin films. ACS Nano 2015, 9, 6548–6554.

15

Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. -H.; Ueno, K.; Saito, R.; Palacios, T. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892–11895.

16

Naylor, C. H.; Parkin, W. M.; Ping, J. L.; Gao, Z. L.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndic, M. et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 2016, 16, 4297–4304.

17

Zhou, L.; Zubair, A.; Wang, Z. Q.; Zhang, X.; Ouyang, F. P.; Xu, K.; Fang, W. J.; Ueno, K.; Li, J.; Palacios, T. et al. Synthesis of high-quality large-area homogenous 1T' MoTe2 from chemical vapor deposition. Adv. Mater. 2016, 28, 9526–9531.

18

Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P. Nanoheterostructure cation exchange: Anionic framework conservation. J. Am. Chem. Soc. 2010, 132, 9997–9999.

19

Li, H. B.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.; Giannini, C.; Manna, L. Sequential cation exchange in nanocrystals: Preservation of crystal phase and formation of metastable phases. Nano Lett. 2011, 11, 4964–4970.

20

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Paul Alivisatos, A. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

21

Wong, A. B.; Lai, M. L.; Eaton, S. W.; Yu, Y.; Lin, E.; Dou, L. T.; Fu, A.; Yang, P. D. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 2015, 15, 5519–5524.

22

Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anionexchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.

23

Ma, Q.; Isarraraz, M.; Wang, C. S.; Preciado, E.; Klee, V.; Bobek, S.; Yamaguchi, K.; Li, E.; Odenthal, P. M.; Nguyen, A. et al. Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 2014, 8, 4672–4677.

24

Su, S. -H.; Hsu, Y. -T.; Chang, Y. -H.; Chiu, M. -H.; Hsu, C. -L.; Hsu, W. -T.; Chang, W. -H.; He, J. -H.; Li, L. -J. Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 2014, 10, 2589–2594.

25

Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygenassisted chemical vapor deposition growth of large singlecrystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

26

Ji, Q. Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D. L.; Shi, J. P.; Sun, Q.; Chen, Q.; Zhang, Y. F.; Liu, Z. F. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett. 2015, 15, 198–205.

27

Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. -H.; Sung, H. -J.; Kan, M.; Kang, H.; Hwang, J. -Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486.

28

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

29

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

30

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

31

Rong, Y. M.; He, K.; Pacios, M.; Robertson, A. W.; Bhaskaran, H.; Warner, J. H. Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging. ACS Nano 2015, 9, 3695–3703.

32

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

33

Liu, Y. N.; Tan, C.; Chou, H.; Nayak, A.; Wu, D.; Ghosh, R.; Chang, H. -Y.; Hao, Y. F.; Wang, X. H.; Kim, J. -S. et al. Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates. Nano Lett. 2015, 15, 4979–4984.

34

Kang, J.; Tongay, S.; Li, J. B.; Wu, J. Q. Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J. Appl. Phys. 2013, 113, 143703.

35

Komsa, H. -P.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenide alloys: Stability and electronic properties. J. Phys. Chem. Lett. 2012, 3, 3652–3656.

36

Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.

37

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

38

Shi, J. P.; Zhou, X. B.; Han, G. -F.; Liu, M. X.; Ma, D. L.; Sun, J. Y.; Li, C.; Ji, Q. Q.; Zhang, Y.; Song, X. J. et al. Narrow-gap quantum wires arising from the edges of monolayer MoS2 synthesized on graphene. Adv. Mater. Interfaces 2016, 3, 1600332.

39

Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

40

Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, J. B.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al.A universal etching-free transfer of MoS2 films for applicationsin photodetectors. Nano Res. 2015, 8, 3662–3672.

41

Sun, Y. F.; Wang, Y. X.; Sun, D.; Carvalho, B. R.; Read, C. G.; Lee, C. -H.; Lin, Z.; Fujisawa, K.; Robinson, J. A.; Crespi, V. H. et al. Low-temperature solution synthesis of few-layer 1T ′-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem., Int. Ed. 2016, 55, 2830–2834.

42

Kan, M.; Wang, B.; Lee, Y. H.; Sun, Q. A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Res. 2015, 8, 1348–1356.

43

Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188–193.

44

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

45

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

46

Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

File
nr-10-8-2761_ESM.pdf (937 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 October 2016
Revised: 11 January 2017
Accepted: 13 January 2017
Published: 20 April 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We acknowledge financial support by National Natural Science Foundation of China (Nos. 51472008, 51290272, 51471004, and 51672307), the National High-tech R & D Program of China (No. 2016YFA0200103), the National Basic Research Program of China (No. 2014CB921002), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201601), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB07030200) and the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC035).

Return