Journal Home > Volume 10 , Issue 8

We develop a unique ternary Pd–Ni–P nanocatalyst for the sensitive enzymefree electrooxidation detection of glucose under alkaline conditions. By reducing the distance between the Pd and Ni active sites in the Pd–Ni–P nanoparticles (NPs) via atom engineering, the catalyst structure is transformed from Pd@Ni–P dumbbells into spherical NPs, greatly enhancing the catalyst sensitivity. The glassy carbon electrode modified with Pd–Ni–P ternary NPs, which behaves as an efficient nonenzymatic glucose sensor, offers excellent electrocatalytic performance with a high sensitivity of 1, 136 μA·mM-1·cm-2, a short response time of 2 s, a wide linear range of 0.5 μM to 10.24 mM, a low limit of detection of 0.15 μM (signal-to-noise ratio = 3), and good selectivity and reproducibility. Moreover, owing to its superior catalytic performance, the Pd–Ni–P modified electrode has excellent reliability for glucose detection in real samples of human serum. Our study provides a promising alternative strategy for designing and constructing high-performance multicomponent nanocatalyst-based sensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ternary Pd–Ni–P nanoparticle-based nonenzymatic glucose sensor with greatly enhanced sensitivity achieved through active-site engineering

Show Author's information Jingwen MaYueguang ChenLin ChenLeyu Wang( )
State Key Laboratory of Chemical Resource Engineering, School of ScienceBeijing University of Chemical TechnologyBeijing100029China

Abstract

We develop a unique ternary Pd–Ni–P nanocatalyst for the sensitive enzymefree electrooxidation detection of glucose under alkaline conditions. By reducing the distance between the Pd and Ni active sites in the Pd–Ni–P nanoparticles (NPs) via atom engineering, the catalyst structure is transformed from Pd@Ni–P dumbbells into spherical NPs, greatly enhancing the catalyst sensitivity. The glassy carbon electrode modified with Pd–Ni–P ternary NPs, which behaves as an efficient nonenzymatic glucose sensor, offers excellent electrocatalytic performance with a high sensitivity of 1, 136 μA·mM-1·cm-2, a short response time of 2 s, a wide linear range of 0.5 μM to 10.24 mM, a low limit of detection of 0.15 μM (signal-to-noise ratio = 3), and good selectivity and reproducibility. Moreover, owing to its superior catalytic performance, the Pd–Ni–P modified electrode has excellent reliability for glucose detection in real samples of human serum. Our study provides a promising alternative strategy for designing and constructing high-performance multicomponent nanocatalyst-based sensors.

Keywords: electrooxidation, Pd–Ni–P ternary nanocatalysts, glucose sensing

References(42)

1

Reach, G.; Wilson, G. S. Can continuous glucose monitoring be used for the treatment of diabetes? Anal. Chem. 1992, 64, 381A–386A.

2

Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 2001, 13, 983–988.

3

Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825.

4

Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763.

5

Wang, G. F.; He, X. P.; Wang, L. L.; Gu, A. X.; Huang, Y.; Fang, B.; Geng, B. Y.; Zhang, X. J. Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 2013, 180, 161–186.

6

Zhu, H.; Li, L.; Zhou, W.; Shao, Z. P.; Chen, X. J. Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 2016, 4, 7333–7349.

7

Meng, L.; Jin, J.; Yang, G. X.; Lu, T. H.; Zhang, H.; Cai, C. X. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal. Chem. 2009, 81, 7271–7280.

8

Wu, W. -P.; Periasamy, A. P.; Lin, G. -L.; Shih, Z. -Y.; Chang, H. -T. Palladium copper nanosponges for electrocatalytic reduction of oxygen and glucose detection. J. Mater. Chem. A 2015, 3, 9675–9681.

9

Zhong, X.; Yuan, R.; Chai, Y. Q. In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors. Chem. Commun. 2012, 48, 597–599.

10

Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.

11

Zhao, Y. X.; Fan, L. L.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Hyper-branched Cu@Cu2O coaxial nanowires mesh electrode for ultra-sensitive glucose detection. ACS Appl. Mater. Interfaces 2015, 7, 16802–16812.

12

Meher, S. K.; Rao, G. R. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale 2013, 5, 2089–2099.

13

Mu, Y.; Jia, D. L.; He, Y. Y.; Miao, Y. Q.; Wu, H. -L. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 2011, 26, 2948–2952.

14

Niu, X. H.; Lan, M. B.; Zhao, H. L.; Chen, C. Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal. Chem. 2013, 85, 3561–3569.

15

Gao, Z. F.; Zhang, L. Q.; Ma, C.; Zhou, Q. D.; Tang, Y. S.; Tu, Z. Q.; Yang, W.; Cui, L. S.; Li, Y. F. TiO2 decorated Co3O4 acicular nanotube arrays and its application as a non-enzymatic glucose sensor. Biosens. Bioelectron. 2016, 80, 511–518.

16

Maroun, F.; Ozanam, F.; Magnussen, O. M.; Behm, R. J. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 2001, 293, 1811–1814.

17

Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A: Chem. 1997, 115, 421–429.

18

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

19

Cao, X.; Wang, N.; Jia, S.; Shao, Y. H. Detection of glucose based on bimetallic PtCu nanochains modified electrodes. Anal. Chem. 2013, 85, 5040–5046.

20

Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.

21

Zhang, L.; Su, H. Y.; Sun, M.; Wang, Y. C.; Wu, W. L.; Yu, T. Y.; Zeng, J. Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Res. 2015, 8, 2415–2430.

22

Cheong, W. C.; Liu, C. H.; Jiang, M. L.; Duan, H. H.; Wang, D. S.; Chen, C.; Li, Y. D. Free-standing palladiumnickel alloy wavy nanosheets. Nano Res. 2016, 9, 2244–2250.

23

Liu, H. M.; Liu, X. Y.; Li, Y. M.; Jia, Y. F.; Tang, Y. W.; Chen, Y. Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Res. 2016, 9, 3494–3503.

24

Shi, W. W.; Chen, X. Q.; Xu, S. Y.; Cui, J. B.; Wang, L. Y. Highly efficient PdCu3 nanocatalysts for Suzuki–Miyaura reaction. Nano Res. 2016, 9, 2912–2920.

25

Zhu, E. B.; Li, Y. J.; Chiu, C. Y.; Huang, X. Q.; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149–157.

26

Ye, J. -S.; Chen, C. -W.; Lee, C. -L. Pd nanocube as nonenzymatic glucose sensor. Sens. Actuators B: Chem. 2015, 208, 569–574.

27

Shen, C. C.; Su, J.; Li, X. Z.; Luo, J. J.; Yang, M. H. Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose. Sens. Actuators B: Chem. 2015, 209, 695–700.

28

Mahshid, S. S.; Mahshid, S.; Dolati, A.; Ghorbani, M.; Yang, L. X.; Luo, S. L.; Cai, Q. Y. Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 2011, 58, 551–555.

29

Yu, L.; Zhang, L.; Wu, H. B.; Lou, X. W. Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem., Int. Ed. 2014, 53, 3711–3714.

30

Wang, Y. C.; Tang, J.; Peng, Z.; Wang, Y. H.; Jia, D. S.; Kong, B.; Elzatahry, A. A.; Zhao, D. Y.; Zheng, G. F. Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing. Nano Lett. 2014, 14, 3668–3673.

31

Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293.

32

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

33

Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts. Nat. Commun. 2017, 8, 14136.

34

Zhao, M.; Abe, K.; Yamaura, S.; Yamamoto, Y.; Asao, N. Fabrication of Pd–Ni–P metallic glass nanoparticles and their application as highly durable catalysts in methanol electro-oxidation. Chem. Mater. 2014, 26, 1056–1061.

35

Cao, X. Q.; Wang, K. Y.; Du, G.; Asiri, A. M.; Ma, Y. J.; Lu, Q.; Sun, X. P. One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor. J. Mater. Chem. B 2016, 4, 7540–7544.

36

Manikandan, A.; Veeramani, V.; Chen, S. M.; Madhu, R.; Ling, L.; Medina, H.; Chen, C. W.; Hung, W. H.; Wang, Z. M.; Shen, G. Z. et al. Low-temperature chemical synthesis of three-dimensional hierarchical Ni(OH)2-coated Ni microflowers for high-performance enzyme-free glucose sensor. J. Phys. Chem. C 2016, 120, 25752–25759.

37

Burke, L. D. Premonolayer oxidation and its role in electrocatalysis. Electrochim. Acta 1994, 39, 1841–1848.

38

Zhao, D. Y.; Xu, C. X. A nanoporous palladium-nickel alloy with high sensing performance towards hydrogen peroxide and glucose. J. Colloid Interface Sci. 2015, 447, 50–57.

39

Hui, S. C.; Zhang, J.; Chen, X. J.; Xu, H. H.; Ma, D. F.; Liu, Y. L.; Tao, B. R. Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode. Sens. Actuators B: Chem. 2011, 155, 592–597.

40

Chen, T.; Liu, D. N.; Lu, W. B.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Three-dimensional Ni2P nanoarray: An efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity. Anal. Chem. 2016, 88, 7885–7889.

41

Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. -K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

42

Bi, H. Y.; Duarte, C. M.; Brito, M.; Vilas-Boas, V.; Cardoso, S.; Freitas, P. Performance enhanced UV/vis spectroscopic microfluidic sensor for ascorbic acid quantification in human blood. Biosens. Bioelectron. 2016, 85, 568–572.

File
nr-10-8-2712_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 December 2016
Revised: 01 January 2017
Accepted: 04 January 2017
Published: 29 April 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21475007, 21675009, and 21275015). We also thank the support from the "Public Hatching Platform for Recruited Talents of Beijing University of Chemical Technology".

Return