Journal Home > Volume 10 , Issue 8

The stability of lead halide perovskite quantum dots (PQDs) was improved by embedding them in carboxybenzene microcrystals. The resulting needle-shaped mixed microcrystals preserved the strong photoluminescence of the PQDs. Compared with previously reported polystyrene-encapsulated PQDs, the carboxybenzene crystals were robust and protected the dots from moisture and photodegradation. The enhanced stability was attributed to the tight matrix of carboxybenzene microcrystals, which protected the PQDs from moisture. This versatile strategy protected various QDs, including all-inorganic PQDs and chalcogenide QDs (e.g., CdSe/ZnS QDs and CuInS/ZnS QDs). It provides a facile and versatile method of protecting PQDs and may enable applications in solid-state systems with high color quality requirements such as displays, lasers, and light emitting diodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability

Show Author's information Wei Xu1Zhixiong Cai1Feiming Li1Jing Dong1Yiru Wang1Yaqi Jiang1Xi Chen1,2( )
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamen361005China

Abstract

The stability of lead halide perovskite quantum dots (PQDs) was improved by embedding them in carboxybenzene microcrystals. The resulting needle-shaped mixed microcrystals preserved the strong photoluminescence of the PQDs. Compared with previously reported polystyrene-encapsulated PQDs, the carboxybenzene crystals were robust and protected the dots from moisture and photodegradation. The enhanced stability was attributed to the tight matrix of carboxybenzene microcrystals, which protected the PQDs from moisture. This versatile strategy protected various QDs, including all-inorganic PQDs and chalcogenide QDs (e.g., CdSe/ZnS QDs and CuInS/ZnS QDs). It provides a facile and versatile method of protecting PQDs and may enable applications in solid-state systems with high color quality requirements such as displays, lasers, and light emitting diodes.

Keywords: perovskite nanocrystals, perovskite quantum dots, down-conversion white LEDs, carboxybenzene crystals

References(33)

1

Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.

2

Chen, J. N.; Zhou, S. S.; Jin, S. Y.; Li, H. Q.; Zhai, T. Y. Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 2016, 4, 11–27.

3

Stoumpos, C. C.; Kanatzidis, M. G. Halide perovskites: Poor man's high-performance semiconductors. Adv. Mater. 2016, 28, 5778–5793.

4

Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

5

Chen, Q.; De Marco, N.; Yang, Y.; Song, T. -B.; Chen, C. -C.; Zhao, H. X.; Hong, Z. R.; Zhou, H. P.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396.

6

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

7

Zhang, W.; Eperon, G. E.; Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 2016, 1, 16048.

8

Cho, H.; Jeong, S. -H.; Park, M. -H.; Kim, Y. -H.; Wolf, C.; Lee, C. -L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

9

Wong, A. B.; Lai, M. L.; Eaton, S. W.; Yu, Y.; Lin, E.; Dou, L. T.; Fu, A.; Yang, P. D. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for lightemitting diodes. Nano Lett. 2015, 15, 5519–5524.

10

Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.

11

Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.

12

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

13

Alias, M. S.; Yang, Y.; Ng, T. K.; Dursun, I.; Shi, D.; Saidaminov, M. I.; Priante, D.; Bakr, O. M.; Ooi, B. S. Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications. J. Phys. Chem. Lett. 2016, 7, 137–142.

14

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. -G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

15

Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.

16

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

17

Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

18

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

19

Ramasamy, P.; Lim, D. -H.; Kim, B.; Lee, S. -H.; Lee, M. -S.; Lee, J. -S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

20

Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 2016, 10, 1224–1230.

21

Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.

22

Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.

23

Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 2000, 12, 1102–1105.

24

Zhang, H.; Cui, Z.; Wang, Y.; Zhang, K.; Ji, X.; Lü, C.; Yang, B.; Gao, M. From water-soluble CdTe nanocrystals to fluorescent nanocrystals-polymer transparent composites using polymerizable surfactants. Adv. Mater. 2003, 15, 777–780.

25

Otto, T.; Müller, M.; Mundra, P.; Lesnyak, V.; Demir, H. V.; Gaponik, N.; Eychmüller, A. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity. Nano Lett. 2012, 12, 5348–5354.

26

Adam, M.; Wang, Z. Y.; Dubavik, A.; Stachowski, G. M.; Meerbach, C.; Soran-Erdem, Z.; Rengers, C.; Demir, H. V.; Gaponik, N.; Eychmüller, A. Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot-salt crystals. Adv. Funct. Mater. 2015, 25, 2638–2645.

27

Erdem, T.; Soran-Erdem, Z.; Kelestemur, Y.; Gaponik, N.; Demir, H. V. Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment. Opt. Express 2016, 24, A74–A84.

28

Müller, M.; Kaiser, M.; Stachowski, G. M.; Resch-Genger, U.; Gaponik, N.; Eychmüller, A. Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals. Chem. Mater. 2014, 26, 3231–3237.

29

Erdem, T.; Soran-Erdem, Z.; Sharma, V. K.; Kelestemur, Y.; Adam, M.; Gaponik, N.; Demir, H. V. Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl. Nanoscale 2015, 7, 17611–17616.

30

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

31

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

32

Pathak, S.; Sakai, N.; Rivarola, F. W. R.; Stranks, S. D.; Liu, J. W.; Eperon, G. E.; Ducati, C.; Wojciechowski, K.; Griffiths, J. T.; Haghighirad, A. A. et al. Perovskite crystals for tunable white light emission. Chem. Mater. 2015, 27, 8066–8075.

33

Palazon, F.; Di Stasio, F.; Akkerman, Q. A.; Krahne, R.; Prato, M.; Manna, L. Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater. 2016, 28, 2902–2906.

File
nr-10-8-2692_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2016
Revised: 10 December 2016
Accepted: 01 January 2017
Published: 26 April 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Scientific Foundation of China (Nos. 21675133 and 21375112) and the Major Projects Science and Technology of Fujian Province (No. 2011YZ0001-1), which are gratefully acknowledged. Furthermore, we would also like to extend our thanks to Prof. Otto Wolfbeis for his valuable suggestions, Prof. John Hodgkiss of the University of Hong Kong for his assistance with English, Ms. Wen Fu for her assistance with the synthesis of CdSe/ZnS QDs and Ms. Xiaoyun Liu for her help in X-ray single crystal diffraction experiments.

Return