Journal Home > Volume 10 , Issue 8

We designed and prepared a hetero-dimensional hybrid (HDH) based on molybdenum selenide (MoSe2) nanodots (NDs) anchored in few-layer MoSe2 nanosheets (NSs) (MoSe2 HDH) via a one-pot hydrothermal process. The MoSe2 HDH exhibits excellent electrocatalytic activity toward hydrogen evolution reaction (HER). This is because, on the one hand, the edge-abundant features of MoSe2 NDs and the unique defect-rich structure at the interface of MoSe2 NSs/NDs could bring in more active sites for HER; on the other hand, the random stacking of the flake-like MoSe2 NSs on the surface of the supporting electrode may achieve efficient charge transport. Additionally, the MoSe2 HDH shows good water stability, desirable biocompatibility, and high near infrared (NIR) photothermal conversion efficiency. Therefore, the MoSe2 HDH is investigated as a nanomedicine in NIR photothermal therapy (PTT) for cancer. Specifically, the MoSe2 HDH can be applied as a dual-modal probe for computed tomography (CT) and photoacoustic tomography (PA) imaging owing to its strong X-ray attenuation ability and NIR absorption. Therefore, the MoSe2 HDH, combining PTT with CT/PA imaging into one system, holds great potential for imaging-guided cancer theranostics. This work may provide an ingenious strategy to prepare other hetero-dimensional layered transition metal dichalcogenides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy

Show Author's information Baoguang Mao1,2Tao Bao3Jie Yu3Lirong Zheng4Jinwen Qin1,2Wenyan Yin3( )Minhua Cao1,2( )
Key Laboratory of Cluster Science, Ministry of Education of ChinaSchool of Chemistry and Chemical Engineering, Beijing Institute of TechnologyBeijing100081China
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsSchool of Chemistry and Chemical Engineering, Beijing Institute of TechnologyBeijing100081China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics, Chinese Academy of SciencesBeijing100049China
Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049China

Abstract

We designed and prepared a hetero-dimensional hybrid (HDH) based on molybdenum selenide (MoSe2) nanodots (NDs) anchored in few-layer MoSe2 nanosheets (NSs) (MoSe2 HDH) via a one-pot hydrothermal process. The MoSe2 HDH exhibits excellent electrocatalytic activity toward hydrogen evolution reaction (HER). This is because, on the one hand, the edge-abundant features of MoSe2 NDs and the unique defect-rich structure at the interface of MoSe2 NSs/NDs could bring in more active sites for HER; on the other hand, the random stacking of the flake-like MoSe2 NSs on the surface of the supporting electrode may achieve efficient charge transport. Additionally, the MoSe2 HDH shows good water stability, desirable biocompatibility, and high near infrared (NIR) photothermal conversion efficiency. Therefore, the MoSe2 HDH is investigated as a nanomedicine in NIR photothermal therapy (PTT) for cancer. Specifically, the MoSe2 HDH can be applied as a dual-modal probe for computed tomography (CT) and photoacoustic tomography (PA) imaging owing to its strong X-ray attenuation ability and NIR absorption. Therefore, the MoSe2 HDH, combining PTT with CT/PA imaging into one system, holds great potential for imaging-guided cancer theranostics. This work may provide an ingenious strategy to prepare other hetero-dimensional layered transition metal dichalcogenides.

Keywords: hydrogen evolution reaction, photothermal therapy, molybdenum selenide, layered transition metal dichalcogenides, hetero-dimensional hybrid

References(49)

1

Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

2

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

3

Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y. P.; Lin, M. C.; Guan, M. Y.; Yang, J.; Chen, C. W. et al. Highly active and stable hybrid catalyst of cobaltdoped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592.

4

Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a highperformance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860–7863.

5

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

6

Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

7

Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

8

Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 13751–13754.

9

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

10

Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

11

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

12

Ji, Q. Q.; Zhang, Y.; Shi, J. P.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Morphological engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution. Adv. Mater. 2016, 28, 6207–6212.

13

Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

14

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

15

Tsai, C.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164.

16

Wang, H. T.; Kong, D. S.; Johanes, P.; Cha, J. J.; Zheng, G. Y.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426–3433.

17

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

18

Xu, C.; Peng, S. J.; Tan, C. L.; Ang, H. X.; Tan, H. T.; Zhang, H.; Yan, Q. Y. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 2014, 2, 5597–5601.

19

Zhou, X. L.; Jiang, J.; Ding, T.; Zhang, J. J.; Pan, B. C.; Zuo, J.; Yang, Q. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nanosheets for high-performance hydrogen evolution. Nanoscale 2014, 6, 11046–11051.

20

Jia, L. P.; Sun, X.; Jiang, Y. M.; Yu, S. J.; Wang, C. M. A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1814–1820.

21

Tang, H.; Dou, K. P.; Kaun, C. -C.; Kuang, Q.; Yang, S. H. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364.

22

Mao, S.; Wen, Z. H.; Ci, S. Q.; Guo, X. R.; Ostrikov, K.; Chen, J. H. Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 2015, 11, 414–419.

23

Yuwen, L. H.; Zhou, J. J.; Zhang, Y. Q.; Zhang, Q.; Shan, J. Y.; Luo, Z. M.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. Nanoscale 2016, 8, 2720–2726.

24

Zhang, X.; Lai, Z. C.; Liu, Z. D.; Tan, C. L.; Huang, Y.; Li, B.; Zhao, M. T.; Xie, L. H.; Huang, W.; Zhang, H. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem., Int. Ed. 2015, 54, 5425–5428.

25

Zhao, X.; Ma, X.; Sun, J.; Li, D. H.; Yang, X. R. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 2016, 10, 2159–2166.

26

Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297–5303.

27

Xu, S. J.; Li, D.; Wu, P. Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127–1136.

28

Fei, H. L.; Ye, R. Q.; Ye, G. L.; Gong, Y. J.; Peng, Z. W.; Fan, X. J.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 2014, 8, 10837–10843.

29

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

30

Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.

31

Jin, H. L.; Huang, H. H.; He, Y. H.; Feng, X.; Wang, S.; Dai, L. M.; Wang, J. C. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 7588–7591.

32

Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160–4164.

33

Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G. S.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 2016, 9, 3003–3017.

34

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

35

Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. Highthroughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933.

36

Rayman, M. P. Selenium in cancer prevention: A review of the evidence and mechanism of action. Proc. Nutr. Soc. 2005, 64, 527–542.

37

Sun, D.; Feng, S. M.; Terrones, M.; Schaak, R. E. Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem. Mater. 2015, 27, 3167–3175.

38

Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

39

Jiang, M.; Zhang, J. J; Wu, M. H.; Jian, W. J.; Xue, H. T.; Ng, T. W; Lee, C. S.; Xu, J. Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 14949–14953.

40

Xie, D.; Tang, W. J.; Wang, Y. D.; Xia, X. H.; Zhong, Y.; Zhou, D.; Wang, D. H.; Wang, X. L.; Tu, J. P. Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res. 2016, 9, 1618–1629.

41

Liu, Y. W.; Cheng, H.; Lyu, M.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

42

Cai, X. J.; Jia, X. Q.; Gao, W.; Zhang, K.; Ma, M.; Wang, S. G.; Zheng, Y. Y.; Shi, J. L.; Chen, H. R. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy. Adv. Funct. Mater. 2015, 25, 2520–2529.

43

Yang, Y.; Wu, H. X.; Shi, B. Z.; Guo, L. L.; Zhang, Y. J.; An, X.; Zhang, H.; Yang, S. P. Hydrophilic Cu3BiS3 nanoparticles for computed tomography imaging and photothermal therapy. Part. Part. Syst. Char. 2015, 32, 668–679.

44

Liu, J.; Zheng, X. P.; Yan, L.; Zhou, L. J.; Tian, G.; Yin, W. Y.; Wang, L. M.; Liu, Y.; Hu, Z. B.; Gu, Z. J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 2015, 9, 696–707.

45

Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728.

46

Shilo, M.; Reuveni, T.; Motiei, M.; Popovtzer, R. Nanoparticles as computed tomography contrast agents: Current status and future perspectives. Nanomedicine 2012, 7, 257–269.

47

Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007, 129, 7661–7665.

48

Oh, M. H.; Lee, N.; Kim, H.; Park, S. P.; Piao, Y. Z.; Lee, J.; Jun, S. W.; Moon, W. K.; Choi, S. H.; Hyeon, T. Largescale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal imageguided sentinel lymph node mapping. J. Am. Chem. Soc. 2011, 133, 5508–5515.

49

He, M.; Huang, P.; Zhang, C. L.; Hu, H. Y.; Bao, C. C.; Gao, G.; He, R.; Cui, D. X. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dualmodality imaging. Adv. Funct. Mater. 2011, 21, 4470–4477.

File
nr-10-8-2667_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 October 2016
Revised: 31 December 2016
Accepted: 02 January 2017
Published: 03 May 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21601014, 21471016, and 21271023) and the 111 Project (No. B07012). This work was also financially supported by the Beijing Natural Science Foundation (No. 2162046) and National Basic Research Program of China (No. 2016YFA0201603). The authors would like to thank the Analysis & Testing Center of Beijing Institute of Technology for performing FESEM and TEM measurements.

Return