Journal Home > Volume 10 , Issue 8

Light management and electrical isolation are essential for the majority of optoelectronic nanowire (NW) devices. Here, we present a cost-effective technique, based on vapor-phase deposition of parylene-C and subsequent annealing, that provides conformal encapsulation, anti-reflective coating, improved optical properties, and electrical insulation for GaAs nanowires. The process presented allows facile encapsulation and insulation that is suitable for any nanowire structure. In particular, the parylene-C encapsulation functions as an efficient antireflection coating for the nanowires, with reflectivity down to < 1% in the visible spectrum. Furthermore, the parylene-C coating increases photoluminescence intensity, suggesting improved light guiding to the NWs. Finally, based on this process, a NW LED was fabricated, which showed good diode performance and a clear electroluminescence signal. We believe the process can expand the fabrication possibilities and improve the performance of optoelectronic nanowire devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties

Show Author's information Tuomas Haggren( )Ali ShahAnton AutereJoona-Pekko KakkoVeer DhakaMaria KimTeppo HuhtioZhipei SunHarri Lipsanen( )
Department of Micro- and Nanosciences, Micronova Aalto UniversityAalto P.O. Box 13500, FI-00076 Finland

Abstract

Light management and electrical isolation are essential for the majority of optoelectronic nanowire (NW) devices. Here, we present a cost-effective technique, based on vapor-phase deposition of parylene-C and subsequent annealing, that provides conformal encapsulation, anti-reflective coating, improved optical properties, and electrical insulation for GaAs nanowires. The process presented allows facile encapsulation and insulation that is suitable for any nanowire structure. In particular, the parylene-C encapsulation functions as an efficient antireflection coating for the nanowires, with reflectivity down to < 1% in the visible spectrum. Furthermore, the parylene-C coating increases photoluminescence intensity, suggesting improved light guiding to the NWs. Finally, based on this process, a NW LED was fabricated, which showed good diode performance and a clear electroluminescence signal. We believe the process can expand the fabrication possibilities and improve the performance of optoelectronic nanowire devices.

Keywords: annealing, light emitting diode (LED), GaAs, antireflection, parylene-C, metallo-organic vapor, phase epitaxy (MOVPE)

References(32)

1

Qian, F.; Gradečak, S.; Li, Y; Wen, C.-Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

2

Guo, W.; Banerjee, A.; Bhattacharya, P.; Ooi, B. S. InGaN/ GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl. Phys. Lett. 2011, 98, 193102.

3

Hong, Y. J.; Lee, C.-H.; Park, J. B.; An, S. J.; Yi, G.-C. GaN nanowire/thin film vertical structure p–n junction light- emitting diodes. Appl. Phys. Lett. 2013, 103, 261116.

4

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

5

Aberg, I.; Vescovi, G.; Asoli, D.; Naseem, U.; Gilboy, J. P.; Sundvall, C.; Dahlgren, A.; Svensson, K. E.; Anttu, N.; Bjork, M. T. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J. Photovolt. 2016, 6, 185–190.

6

Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fält, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1050–1061.

7

Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2009, 2, 035004.

8

Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.

9

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

10

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room- temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

11

Perraud, S.; Poncet, S.; Noël, S.; Levis, M.; Faucherand, P.; Rouvière, E.; Thony, P.; Jaussaud, C.; Delsol, R. Full process for integrating silicon nanowire arrays into solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1568–1571.

12

Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

13

Umar, A.; Hahn, Y.-B. Ultraviolet-emitting ZnO nano­structures on steel alloy substrates: Growth and properties. Cryst. Growth Des. 2008, 8, 2741–2747.

14

Dhaka, V.; Haggren, T.; Jussila, H.; Jiang, H.; Kauppinen, E.; Huhtio, T.; Sopanen, M.; Lipsanen, H. High quality GaAs nanowires grown on glass substrates. Nano Lett. 2012, 12, 1912–1918.

15

Novotny, C. J.; Yu, E. T.; Yu, P. K. L. InP nanowire/polymer hybrid photodiode. Nano Lett. 2008, 8, 775–779.

16

Haggren, T.; Perros, A.; Dhaka, V.; Huhtio, T.; Jussila, H.; Jiang, H.; Ruoho, M.; Kakko, J. P.; Kauppinen, E.; Lipsanen, H. GaAs nanowires grown on Al-doped ZnO buffer layer. J. Appl. Phys. 2013, 114, 084309.

17

Alet, P.-J.; Yu, L. W.; Patriarche, G.; Palacin, S.; Roca i Cabarrocas, P. In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ITO. J. Mater. Chem. 2008, 18, 5187–5189.

18

Guo, W.; Banerjee, A.; Zhang, M.; Bhattacharya, P. Barrier height of Pt–InxGa1−xN (0≤x≤0.5) nanowire Schottky diodes. Appl. Phys. Lett. 2011, 98, 183116.

19

Abramson, A. R.; Kim, W. C.; Huxtable, S. T.; Yan, H. Q.; Wu, Y. Y.; Majumdar, A.; Tien, C.-L.; Yang, P. D. Fabrication and characterization of a nanowire/polymer- based nanocomposite for a prototype thermoelectric device. J. Microelectromech. Syst. 2004, 13, 505–313.

20

Weisse, J. M.; Marconnet, A. M.; Kim, D. R.; Rao, P. M.; Panzer, M. A.; Goodson, K. E.; Zheng, X. L. Thermal conductivity in porous silicon nanowire arrays. Nanoscale Res. Lett. 2012, 7, 554.

21

Anttu, N.; Xu, H. Q. Efficient light management in vertical nanowire arrays for photovoltaics. Opt. Express 2013, 21 Suppl 3, A558–A575.

22

Jeong, Y.; Ratier, B.; Moliton, A.; Guyard, L. UV–visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation. Synth. Met. 2002, 127, 189–193.

23

Gaynor, J. F.; Desu, S. B. Optical properties of polymeric thin films grown by chemical vapor deposition. J. Mater. Res. 1996, 11, 236–242.

24

Niegisch, W. D. Crystallography of poly-p-xylylene. J. Appl. Phys. 1966, 37, 4041–4046.

25

Kirkpatrich, D. E.; Wunderlich, B. On the reversibility of the crystalline phase transitions of poly(p-xylylene). J. Polym. Sci. Part B Polym. Phys. 1986, 24, 931–933.

26

Golda-Cepa, M.; Engvall, K.; Kotarba, A. Development of crystalline–amorphous parylene C structure in micro- and nano-range towards enhanced biocompatibility: The importance of oxygen plasma treatment time. RSC Adv. 2015, 5, 48816–48821.

27

Maggioni, G.; Campagnaro, A.; Carturan, S.; Quaranta, A. Dye-doped parylene-based thin film materials: Application to luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 2013, 108, 27–37.

28
Haggren, T.; Kakko, J.-P.; Jiang, H.; Dhaka, V.; Huhtio, T.; Lipsanen, H. Effects of Zn doping on GaAs nanowires. In Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, Canada, 2014, pp 825–829.https://doi.org/10.1109/NANO.2014.6968091
DOI
29

Lysov, A.; Offer, M.; Gutsche, C.; Regolin, I.; Topaloglu, S.; Geller, M.; Prost, W.; Tegude, F.-J. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Nanotechnology 2011, 22, 85702.

30

Demichel, O.; Heiss, M.; Bleuse, J.; Mariette, H.; Fontcuberta i Morral, A. Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 2010, 97, 201907.

31

Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Jagadish, C. Insights into single semiconductor nanowire heterostructures using time-resolved photoluminescence. Semicond. Sci. Technol. 2010, 25, 024010.

32

Haggren, T.; Jiang, H.; Kakko, J.-P.; Huhtio, T.; Dhaka, V.; Kauppinen, E.; Lipsanen, H. Strong surface passivation of GaAs nanowires with ultrathin InP and GaP capping layers. Appl. Phys. Lett. 2014, 105, 033114.

File
nr-10-8-2657_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2016
Revised: 07 December 2016
Accepted: 01 January 2017
Published: 14 March 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The work was supported by the Nwires project (Academy of Finland project #284529) and by the Moppi project of Aalto Energy Efficiency Program. T. H. wishes to thank Emil Aaltonen Foundation, Tekniikan Edistämissäätiö, Ulla Tuominen Foundation and Walter Ahlström Foundation for supporting the research. Majority of the work was performed in the Micronova clean room facilities.

Return