Journal Home > Volume 10 , Issue 8

Early diagnosis remains highly important for efficient cancer treatment, and hence, there is significant interest in the development of effective imaging strategies. This work reports a new multimodal bioimaging method for accurate and rapid diagnosis of cancer cells by introducing aqueous Fe2+ and Zn2+ ions into cancer cells (i.e., HeLa, U87, and HepG2 cancer cells). We found that the biocompatible metal ions Fe2+ and Zn2+ forced the cancer cells to spontaneously synthesize fluorescent ZnO nanoclusters and magnetic Fe3O4 nanoclusters. These clusters could then be used for multimodal cancer imaging by combining fluorescence imaging with magnetic resonance imaging and computed tomography imaging. Meanwhile, for normal cells (i.e., L02) and tissues, neither fluorescence nor any other obvious difference could be detected between pre- and post-injection. This multimodal bioimaging strategy based on the in situ biosynthesized Zn & Fe oxide nanoclusters might therefore be useful for early cancer diagnosis and therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn & Fe nanoclusters

Show Author's information Tianyu Du1,§Chunqiu Zhao1,§Fawad ur Rehman1Lanmei Lai1Xiaoqi Li2Yi Sun3Shouhua Luo3Hui Jiang1Matthias Selke4Xuemei Wang1( )
State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab) School of Biological Science and Medical Engineering Southeast UniversityNanjing 210096 China
Nanjing Foreign Language SchoolNanjing 210096 China
Laboratory of the signal and image processing School of Biological Science and Medical Engineering Southeast UniversityNanjing 210096 China
Department of Chemistry and Biochemistry California State UniversityLos Angeles CA 90032 USA

§ These authors contributed equally to this work.

Abstract

Early diagnosis remains highly important for efficient cancer treatment, and hence, there is significant interest in the development of effective imaging strategies. This work reports a new multimodal bioimaging method for accurate and rapid diagnosis of cancer cells by introducing aqueous Fe2+ and Zn2+ ions into cancer cells (i.e., HeLa, U87, and HepG2 cancer cells). We found that the biocompatible metal ions Fe2+ and Zn2+ forced the cancer cells to spontaneously synthesize fluorescent ZnO nanoclusters and magnetic Fe3O4 nanoclusters. These clusters could then be used for multimodal cancer imaging by combining fluorescence imaging with magnetic resonance imaging and computed tomography imaging. Meanwhile, for normal cells (i.e., L02) and tissues, neither fluorescence nor any other obvious difference could be detected between pre- and post-injection. This multimodal bioimaging strategy based on the in situ biosynthesized Zn & Fe oxide nanoclusters might therefore be useful for early cancer diagnosis and therapy.

Keywords: cancer diagnosis, multimodal imaging, biosynthesized, Zn & Fe oxide nanoclusters

References(30)

1

Peto, J. Cancer epidemiology in the last century and the next decade. Nature 2001, 411, 390–395.

2

Wang, C. S.; Li, J. Y.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. M. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem., Int. Ed. 2011, 50, 11644–11648.

3

Qiu, J. J.; Xiao, Q. F.; Zheng, X. P.; Zhang, L. B.; Xing, H. Y.; Ni, D. L.; Liu, Y. Y.; Zhang, S. J.; Ren, Q. G.; Hua, Y. Q. et al. Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/ photodynamic/radiation synergistic cancer therapy. Nano Res. 2015, 8, 3580–3590.

4

Lee, N.; Choi, S. H.; Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 2013, 25, 2641–2660.

5

Liu, T.; Wu, G. Y.; Cheng, J. J.; Lu, Q.; Yao, Y. J.; Liu, Z. J.; Zhu, D. C.; Zhou, J.; Xu, J. R.; Zhu, J. et al. Multifunctional lymph-targeted platform based on Mn@mSiO2 nanocomposites: Combining PFOB for dual-mode imaging and DOX for cancer diagnose and treatment. Nano Res. 2016, 9, 473–489.

6

Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679–694.

7

Yang, Z. Z.; Ding, X. G.; Jiang, J. Facile synthesis of magnetic-plasmonic nanocomposites as T1 MRI contrast enhancing and photothermal therapeutic agents. Nano Res. 2016, 9, 787–799.

8

Shin, T. H.; Choi, J. S.; Yun, S.; Kim, I. S.; Song, H. T.; Kim, Y.; Park, K. I.; Cheon, J. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 2014, 8, 3393–3401.

9

Lehnert, B. E.; Goodwin, E. H.; Deshpande, A. Extracellular factor(s) following exposure to α particles can cause sister chromatid exchanges in normal human cells. Cancer Res. 1997, 57, 2164–2171.

10

Taylor, D.; Hazenberg, J. G.; Lee, T. C. Living with cracks: Damage and repair in human bone. Nat. Mater. 2007, 6, 263–268.

11

Cohen-Hoshen, E.; Bryant, G. W.; Pinkas, I.; Sperling, J.; Bar-Joseph, I. Exciton-plasmon interactions in quantum dot- gold nanoparticle structures. Nano Lett. 2012, 12, 4260–4264.

12

Wang, J. L.; Zhang, G.; Li, Q. W.; Jiang, H.; Liu, C. Y.; Amatore, C.; Wang, X. M. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci. Rep. 2013, 3, 1157.

13

Gao, S. P.; Chen, D. H.; Li, Q. W.; Ye, J.; Jiang, H.; Amatore, C.; Wang, X. M. Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Sci. Rep. 2014, 4, 4384.

14

Chen, D. H.; Zhao, C. Q.; Ye, J.; Li, Q. W.; Liu, X. L.; Su, M. N.; Jiang, H.; Amatore, C.; Selke, M.; Wang, X. M. In situ biosynthesis of fluorescent platinum nanoclusters: Toward self-bioimaging-guided cancer theranostics. ACS Appl. Mater. Interfaces 2015, 7, 18163–18169.

15

Chen, Q.; Li, K. G.; Wen, S. H.; Liu, H.; Peng, C.; Cai, H. D.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer- entrapped gold nanoparticles. Biomaterials 2013, 34, 5200– 5209.

16

Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

17

Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K. S.; Na, H. B.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. H.; Baik, S. I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 2009, 21, 4467–4471.

18

Grootveld, M.; Halliwell, B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochem. J. 1986, 237, 499–504.

19

Jang, S. W.; Lopez-Anido, C.; MacArthur, R.; Svaren, J.; Inglese, J. Identification of drug modulators targeting gene- dosage disease CMT1A. ACS Chem. Biol. 2012, 7, 1205–1213.

20

Li, D. L.; Zhao, X. B.; Zhang, L. W.; Li, F.; Ji, N.; Gao, Z. X.; Wang, J. S.; Kang, P.; Liu, Z. F.; Shi, J. Y. et al. 68Ga- PRGD2 PET/CT in the evaluation of glioma: A prospective study. Mol. Pharmaceutics 2014, 11, 3923–3929.

21

Betzer, O.; Shwartz, A.; Motiei, M.; Kazimirsky, G.; Gispan, I.; Damti, E.; Brodie, C.; Yadid, G.; Popovtzer, R. Nanoparticle- based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: Application in neuropsychiatric disorders. ACS Nano 2014, 8, 9274–9285.

22

Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265.

23

Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161–2175.

24

Terreno, E.; Delli Castelli, D.; Viale, A.; Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 2010, 110, 3019–3042.

25

Tong, S.; Hou, S. J.; Zheng, Z. L.; Zhou, J.; Bao, G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 2010, 10, 4607–4613.

26

Choi, J. S.; Lee, J. H.; Shin, T. H.; Song, H. T.; Kim, E. Y.; Cheon, J. Self-confirming "AND" logic nanoparticles for fault-free MRI. J. Am. Chem. Soc. 2010, 132, 11015–11017.

27

Su, M. N.; Ye, J.; Li, Q. W.; Ge, W.; Zhang, Y. Y.; Jiang, H.; Amatore, C.; Wang, X. M. In vivo accurate target bio-marking of tumors through in-situ biosynthesized fluorescent zinc nanoclusters. RSC Adv. 2015, 5, 74844–74849.

28

Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591.

29

Bienert, G. P.; Schjoerring, J. K.; Jahn, T. P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 2006, 1758, 994–1003.

30

Wang, H. P.; Jiang, H.; Wang, X. M. Construction of strong alkaline microcavities for facile synthesis of fluorescence- tunable ZnO quantum dots. Chem. Commun. 2010, 46, 6900–6902.

Video
nr-10-8-2626_ESM_Movie S1.avi
nr-10-8-2626_ESM_Movie S2.avi
File
nr-10-8-2626_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 September 2016
Revised: 30 December 2016
Accepted: 02 January 2017
Published: 03 April 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is supported by the National High-tech R & D Program of China (No. 2015AA020502) and the National Natural Science Foundation of China (Nos. 81325011, 21327902 and 21175020). M. S. acknowledges support from the NSF-PREM program (No. DRM-1523588).

Return