Journal Home > Volume 10 , Issue 8

A facile, fluorine-free approach for synthesizing vertically aligned arrays of mesocrystalline anatase TiO2 nanosheets with highly exposed {001} facets was developed through topotactic transformation. Unique mesocrystalline {001}-faceted TiO2 nanosheet arrays vertically aligned on conductive fluorine-doped tin oxide glass were realized through topotactic conversion from single-crystalline precursor nanosheet arrays based on lattice matching between the precursor and the anatase crystals. The morphology and microstructure of the {001}-faceted TiO2 nanosheets could be readily modulated by changing the reactant concentration and annealing temperature. Owing to enhanced dye adsorption, reduced charge recombination, and enhanced light scattering arising from the exposed {001} facets, in addition to the advantageous features of low-dimensional structure arrays (e.g., fast electron transport and efficient charge collection), the obtained TiO2 nanosheet arrays exhibited superior performance when they were used as anodes for dye-sensitized solar cells (DSSCs). Particularly, {001}-faceted TiO2 nanosheet arrays ~15 μm long annealed at 500 ℃ showed a power conversion efficiency of 7.51%. Furthermore, a remarkable efficiency of 8.85% was achieved for a DSSC based on double-layered TiO2 nanosheet arrays ~35 μm long, which were prepared by conversion from the precursor nanoarrays produced via secondary hydrothermal growth.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesocrystalline TiO2 nanosheet arrays with exposed {001} facets: Synthesis via topotactic transformation and applications in dye-sensitized solar cells

Show Author's information Yanhe ZhangJinguang CaiYurong MaLimin Qi( )
Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry Peking UniversityBeijing 100871 China

Abstract

A facile, fluorine-free approach for synthesizing vertically aligned arrays of mesocrystalline anatase TiO2 nanosheets with highly exposed {001} facets was developed through topotactic transformation. Unique mesocrystalline {001}-faceted TiO2 nanosheet arrays vertically aligned on conductive fluorine-doped tin oxide glass were realized through topotactic conversion from single-crystalline precursor nanosheet arrays based on lattice matching between the precursor and the anatase crystals. The morphology and microstructure of the {001}-faceted TiO2 nanosheets could be readily modulated by changing the reactant concentration and annealing temperature. Owing to enhanced dye adsorption, reduced charge recombination, and enhanced light scattering arising from the exposed {001} facets, in addition to the advantageous features of low-dimensional structure arrays (e.g., fast electron transport and efficient charge collection), the obtained TiO2 nanosheet arrays exhibited superior performance when they were used as anodes for dye-sensitized solar cells (DSSCs). Particularly, {001}-faceted TiO2 nanosheet arrays ~15 μm long annealed at 500 ℃ showed a power conversion efficiency of 7.51%. Furthermore, a remarkable efficiency of 8.85% was achieved for a DSSC based on double-layered TiO2 nanosheet arrays ~35 μm long, which were prepared by conversion from the precursor nanoarrays produced via secondary hydrothermal growth.

Keywords: nanosheets, titanium dioxide, dye-sensitized solar cells, {001} facets, mesocrystals, nanostructure arrays

References(81)

1

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737−740.

2

Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215−219.

3

Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114, 10095−10130.

4

Ding, Y.; Xia, X.; Chen, W. C.; Hu, L. H.; Mo, L. E.; Huang, Y.; Dai, S. Y. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high-efficiency dye-sensitized solar cells. Nano Res. 2016, 9, 1891–1903.

5

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919−9986.

6

Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987−10043.

7

Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092–2101.

8

Wang, W. H.; Dong, J. Y.; Ye, X. Z.; Li, Y.; Ma, Y. R.; Qi, L. M. Heterostructured TiO2 nanorod@nanobowl arrays for efficient photoelectrochemical water splitting. Small 2016, 12, 1469–1478.

9

Songa T.; Paik, U. TiO2 as an active or supplemental material for lithium batteries. J. Mater. Chem. A 2016, 4, 14–31.

10

Ye, J. F.; Liu, W.; Cai, J. G.; Chen, S.; Zhao, X. W.; Zhou, H. H.; Qi, L. M. Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 2011, 133, 933–940.

11

Cai, J. G.; Ye, J. F.; Chen, S. Y.; Zhao, X. W.; Zhang, D. Y.; Chen, S.; Ma, Y. R.; Jin, S.; Qi, L. M. Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays. Energy Environ. Sci. 2012, 5, 7575–7581.

12

Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H.-M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559−9612.

13

Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong S.-T.; Mohamed, A. R. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization. Nanoscale 2014, 6, 1946–2008.

14

Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.

15

Wang, X. D.; Li, Z. D.; Shi, J.; Yu, Y. H. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346–9384.

16

Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385−9454.

17

Liu, P. R.; Wang, Y.; Zhang, H. M.; An, T. C.; Yang, H. G.; Tang, Z. Y.; Cai, W. P.; Zhao, H. J. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets. Small 2012, 8, 3664– 3673.

18

Yang, L.; Wang, G. Z.; Zhang, H. M.; Zhang, Y. X.; Kang, S. H.; Zhao, H. J. Photoelectrochemical manifestation of intrinsic photoelectron transport properties of vertically aligned {001} faceted single crystal TiO2 nanosheet films. RSC Adv. 2015, 5, 55438–55444.

19

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

20

Hardin, B. E.; Snaith, H. J.; McGehee, M. D. The renaissance of dye-sensitized solar cells. Nat. Photonics 2012, 6, 162–169.

21

Fakharuddin, A.; Jose, R.; Brown, T. M.; Fabregat-Santiago, F.; Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 2014, 7, 3952–3981.

22

Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247.

23

Zhang, Q. F.; Cao, G. Z. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 2011, 6, 91–109.

24

Raj, C. C.; Prasanth, R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 2016, 317, 120–132.

25

Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

26

Feng, X. J.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E. Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires. Angew. Chem., Int. Ed. 2012, 51, 2727–2730.

27

Yu, H.; Pan, J.; Bai, Y.; Zong, X.; Li, X. Y.; Wang, L. Z. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells. Chem. —Eur. J. 2013, 19, 13569–13574.

28

Zha, C. Y.; Shen, L. M.; Zhang, X. Y.; Wang, Y. F.; Korgel, B. A.; Gupta, A.; Bao, N. Z. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 122–129.

29

Zhong, P.; Ma, X. H.; Chen, X. P.; Zhong, R.; Liu, X. H.; Ma, D. J.; Zhang, M. L.; Li, Z. M. Morphology-controllable polycrystalline TiO2 nanorod arrays for efficient charge collection in dye-sensitized solar cells. Nano Energy 2015, 16, 99–111.

30

Yu, X.; Wang, H.; Liu, Y.; Zhou, X.; Li, B. J.; Xin, L.; Zhou, Y.; Shen, H. One-step ammonia hydrothermal synthesis of single crystal anatase TiO2 nanowires for highly efficient dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 2110– 2117.

31

Mohammadpour, F.; Moradi, M.; Lee, K.; Cha, G.; So, S.; Kahnt, A.; Guldi, D. M.; Altomare, M.; Schmuki, P. Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile. Chem. Commun. 2015, 51, 1631–1634.

32

So, S.; Hwang, I.; Schmuki, P. Hierarchical DSSC structures based on "single walled" TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. Energy Environ. Sci. 2015, 8, 849–854.

33

Wu, W.-Q.; Xu, Y.-F.; Su, C.-Y.; Kuang, D.-B. Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 644–649.

34

Que, L. F.; Lan, Z.; Wu, W. X.; Wu, J. H.; Lin, J. M.; Huang, M. L. High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires. J. Power Sources 2014, 266, 440–447.

35

Li, H. L.; Yu, Q. J.; Huang, Y. W.; Yu, C. L.; Li, R. Z.; Wang, J. Z.; Guo, F. Y.; Jiao, S. J.; Gao, S. Y.; Zhang, Y. et al. Ultralong rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2016, 8, 13384–13391.

36

Lv, M. Q.; Zheng, D. J.; Ye, M. D.; Xiao, J.; Guo, W. X.; Lai, Y. K.; Sun, L.; Lin, C. J.; Zuo, J. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 1615–1622.

37

Wu, W.-Q.; Lei, B.-X; Rao, H.-S.; Xu, Y.-F.; Wang, Y.-F.; Su, C.-Y.; Kuang, D.-B. Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 2013, 3, 1352.

38

Wu, W.-Q.; Rao, H.-S.; Feng, H. L.; Chen, H.-Y; Kuang, D.-B.; Su, C.-Y. A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion. Nano Energy 2014, 9, 15–24.

39

Wu, W.-Q.; Feng, H.-L.; Rao, H.-S.; Xu, Y.-F.; Kuang, D.-B.; Su, C.-Y. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures. Nat. Commun. 2014, 5, 3968.

40

Li, W. X.; Yang, J. Y.; Jiang, Q. H.; Luo, Y. B.; Hou, Y. R.; Zhou, S. Q.; Zhou, Z. W. Bi-layer of nanorods and three- dimensional hierarchical structure of TiO2 for high efficiency dye-sensitized solar cells. J. Power Sources 2015, 284, 428–434.

41

Wang, H.; Wang, B. Y.; Yu, J. C.; Hu, Y. X.; Xia, C.; Zhang J.; Liu, R. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Sci. Rep. 2015, 5, 9305.

42

Wu, W.-Q.; Xu, Y.-F.; Rao, H.-S.; Su, C.-Y; Kuang, D.-B. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J Am. Chem. Soc. 2014, 136, 6437–6445.

43

Gu, J. W.; Khan, J.; Chai, Z. S.; Yuan, Y. F.; Yu, X.; Liu, P. Y.; Wu, M. M.; Mai, W. J. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells. J. Power Sources 2016, 303, 57–64.

44

Yu, J. G.; Fan, J. J.; Lv, K. L. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010, 2, 2144–2149.

45

Wu, X.; Chen, Z. G.; Lu, G. Q.; Wang, L. Z. Nanosized anatase TiO2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells. Adv. Funct. Mater. 2011, 21, 4167–4172.

46

Zhang, J. Y.; Wang, J. J.; Zhao, Z. Y.; Yu, T.; Feng, J. Y.; Yuan, Y. J.; Tang, Z. K.; Liu, Y. H.; Li, Z. S.; Zou, Z. G. Reconstruction of the (001) surface of TiO2 nanosheets induced by the fluorine-surfactant removal process under UV-irradiation for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 4763–4769.

47

Peng, J.-D.; Shih, P.-C.; Lin, H.-H.; Tseng, C.-M.; Vittal, R.; Suryanarayanan, V.; Ho, K.-C. TiO2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells. Nano Energy 2014, 10, 212–221.

48

Yang, W. G.; Li, J. M.; Wang, Y. L.; Zhu, F.; Shi, W. M.; Wan, F. R.; Xu, D. S. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun. 2011, 47, 1809–1811.

49

Fang, W. Q.; Yang, X. H.; Zhu, H. J.; Li, Z.; Zhao, H. J.; Yao, X. D.; Yang, H. G. Yolk@shell anatase TiO2 hierarchical microspheres with exposed {001} facets for high-performance dye sensitized solar cells. J. Mater. Chem. 2012, 22, 22082– 22089.

50

Sun, W. W.; Sun, K.; Peng, T.; You, S. J.; Liu, H. M.; Liang, L. L.; Guo, S. H.; Zhao, X.-Z. Constructing hierarchical fastener-like spheres from anatase TiO2 nanosheets with exposed {001} facets for high-performance dye-sensitized solar cells. J. Power Sources 2014, 262, 86–92.

51

Lei, B.-X; Zhang, P.; Xie, M.-L.; Li, Y.; Wang, S.-N.; Yu, Y.-Y.; Sun, W.; Sun, Z.-F. Constructing hierarchical porous titania microspheres from titania nanosheets with exposed (001) facets for dye-sensitized solar cells. Electrochim. Acta 2015, 173, 497–505.

52

Peng, J.-D.; Lin, H.-H.; Lee, C.-T.; Tseng, C.-M.; Suryanarayanan, V.; Vittal, R.; Ho, K.-C. Hierarchically assembled microspheres consisting of nanosheets of highly exposed (001)-facets TiO2 for dye-sensitized solar cells. RSC Adv. 2016, 6, 14178–14191.

53

Sun, W. W.; Peng, T.; Liu, Y. M.; Yu, W. J.; Zhang, K.; Mehnane, H. F.; Bu, C. H.; Guo, S. S.; Zhao, X.-Z. Layer- by-layer self-assembly of TiO2 hierarchical nanosheets with exposed {001} facets as an effective bifunctional layer for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 9144–9149.

54

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

55

Yu, J. G.; Xiang, Q. J.; Ran, J. R.; Mann, S. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 2010, 12, 872–879.

56

Zhang, D. Q.; Li, G. S.; Wang, H. B.; Chan, K. M.; Yu, J. C. Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst. Growth Des. 2010, 10, 1130–1137.

57

Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N.; Gao, J. N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.

58

Guo, C. F.; Cao, S. H.; Zhang, J. M.; Tang, H. Y.; Guo, S. M.; Tian, Y.; Liu, Q. Topotactic transformations of superstructures: From thin films to two-dimensional networks to nested two-dimensional networks. J. Am. Chem. Soc. 2011, 133, 8211–8215.

59

Chen, S.; Xin, Y. L.; Zhou, Y. Y.; Ma, Y. R.; Zhou H. H.; Qi, L. M. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 2014, 7, 1924–1930.

60

Zhou, L.; Smyth-Boyle, D.; O'Brien, P. A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. J. Am. Chem. Soc. 2008, 130, 1309–1320.

61

Cai, J. G.; Qi, L. M. TiO2 mesocrystals: Synthesis, formation mechanisms and applications. Sci. China Chem. 2012, 55, 2318–2326.

62

Li, W.; Bai, Y.; Liu, W. J.; Liu, C.; Yang, Z. H.; Feng, X.; Lu, X. H.; Chan, K.-Y. Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties. J. Mater. Chem. 2011, 21, 6718–6724.

63

Chen, C. D.; Xu, L. F.; Sewvandi, G. A.; Kusunose, T.; Tanaka, Y.; Nakanishi, S.; Feng, Q. Microwave-assisted topochemical conversion of layered titanate nanosheets to {010}-faceted anatase nanocrystals for high performance photocatalysts and dye-sensitized solar cells. Cryst. Growth Des. 2014, 14, 5801–5811.

64

Chen, C. D.; Ikeuchi, Y.; Xu, L. F.; Sewvandi, G. A.; Kusunose, T.; Tanaka, Y.; Nakanishi, S.; Wen, P. H.; Feng, Q. Synthesis of [111]- and {010}-faceted anatase TiO2 nanocrystals from tri-titanate nanosheets and their photocatalytic and DSSC performances. Nanoscale 2015, 7, 7980–7991.

65

Hu, D. W.; Zhang, W. X.; Tanaka, Y.; Kusunose, N.; Peng, Y.; Feng, Q. Mesocrystalline nanocomposites of TiO2 polymorphs: Topochemical mesocrystal conversion, characterization, and photocatalytic response. Cryst. Growth Des. 2015, 15, 1214–1225.

66

Scolan, E.; Sanchez, C. Synthesis and characterization of surface-protected nanocrystalline titania particles. Chem. Mater. 1998, 10, 3217–3223.

67

Guo, X.-Z; Luo, Y.-H.; Zhang, Y.-D; Huang, X.-C.; Li, D.-M; Meng, Q.-B. Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup. Rev. Sci. Instrum. 2010, 81, 103106.

68

Guo, X.-Z.; Luo, Y.-H.; Li, C.-H.; Qin, D.; Li, D.-M.; Meng, Q.-B. Can the incident photo-to-electron conversion efficiency be used to calculate short-circuit current density of dye- sensitized solar cells. Curr. Appl. Phys. 2012, 12, e54–e58.

69

Dong, C. PowderX: Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Cryst. 1999, 32, 838.

70

Zhang, X. J.; Zhang, X. H.; Zou, K.; Lee, C. S.; Lee, S.-T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. J. Am. Chem. Soc. 2007, 129, 3527–3532.

71

Fan, X.; Meng, X.-M.; Zhang, X.-H.; Shi, W.-S.; Zhang, W.-J.; Zapien, J. A.; Lee, C.-S.; Lee, S.-T. Dart-shaped tricrystal ZnS nanoribbons. Angew. Chem., Int. Ed. 2006, 45, 2568–2571.

72

Liu, B. D.; Bando, Y.; Wang, Z. E.; Li, C. Y.; Gao, M.; Mitome, M.; Jiang, X.; Golberg, D. Crystallography of novel T-shaped ZnS nanostructures and their cathodoluminescence. Cryst. Growth Des. 2010, 10, 4143–4147.

73

Yin, L. W.; Lee, S. T. Wurtzite-twinning-induced growth of three-dimensional Ⅱ-Ⅵ ternary alloyed nanoarchitectures and their tunable band gap energy properties. Nano Lett. 2009, 9, 957–963.

74

Wu, L. L.; Liu, F. W.; Zhang, X. T. Group Ⅲ element-doped ZnO twinning nanostructures. CrystEngComm 2011, 13, 4251–4255.

75

Zhao, C. X.; Li, Y. F.; Zhou, J.; Li, L. Y.; Deng, S. Z.; Xu, N. S.; Chen, J. Large-scale synthesis of bicrystalline ZnO nanowire arrays by thermal oxidation of zinc film: Growth mechanism and high-performance field emission. Cryst. Growth Des. 2013, 13, 2897−2905.

76

Shahani, A. J.; Voorhees, P. W. Twin-mediated crystal growth. J. Mater. Res. 2016, 31, 2936–2947.

77

Lei, B.-X.; Zheng, X.-F.; Qiao, H.-K.; Li, Y.; Wang, S.-N.; Huang, G.-L.; Sun, Z.-F. A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells. Electrochim. Acta 2014, 149, 264–270.

78

Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chem. Commun. 2006, 3551–3553.

79

Liu, Z.-H.; Su, X.-J.; Hou, G.-L.; Bi, S.; Xiao, Z.; Jia, H.-P. Enhanced performance for dye-sensitized solar cells based on spherical TiO2 nanorod-aggregate light-scattering layer. J. Power Sources 2012, 218, 280–285.

80

Zhao, Z. X.; Liu, G. C.; Li, B.; Guo, L. X.; Fei, C. B.; Wang, Y. J.; Lv, L. L.; Liu, X. G.; Tian, J. J.; Cao, G. Z. Dye-sensitized solar cells based on hierarchically structured porous TiO2 filled with nanoparticles. J. Mater. Chem. A 2015, 3, 11320–11329.

81

Zhang, S. F.; Yang, X. D.; Numata, Y.; Han, L. Y. Highly efficient dye-sensitized solar cells: Progress and future challenges. Energy Environ. Sci. 2013, 6, 1443–1464.

File
nr-10-8-2610_ESM.pdf (852.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 September 2016
Revised: 29 December 2016
Accepted: 02 January 2017
Published: 02 January 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21473004 and 21673007) and the National Basic Research Program of China (No. 2013CB932601).

Return