Journal Home > Volume 10 , Issue 4

Lithium metal is considered the ideal anode material for Li-ion-based batteries because it exhibits the highest specific capacity and lowest redox potential for this type of cells. However, growth of Li dendrites, unstable solid electrolyte interphases, low Coulombic efficiencies, and safety hazards have significantly hindered the practical application of metallic Li anodes. Herein, we propose a three-dimensional (3D) carbon nanotube sponge (CNTS) as a Li deposition host. The high specific surface area of the CNTS enables homogenous charge distribution for Li nucleation and minimizes the effective current density to overcome dendrite growth. An additional conformal Al2O3 layer on the CNTS coated by atomic layer deposition (ALD) robustly protects the Li metal electrode/electrolyte interface due to the good chemical stability and high mechanical strength of the layer. The Li@ALD-CNTS electrode exhibits stable voltage profiles with a small overpotential ranging from 16 to 30 mV over 100 h of cycling at 1.0 mA·cm–2. Moreover, the electrodes display a dendrite-free morphology after cycling and a Coulombic efficiency of 92.4% over 80 cycles at 1.0 mA·cm–2 in an organic carbonate electrolyte, thus demonstrating electrochemical stability superior to that of planar current collectors. Our results provide an important strategy for the rational design of current collectors to obtain stable Li metal anodes.

File
nr-10-4-1356_ESM.pdf (559.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2016
Revised: 26 December 2016
Accepted: 01 January 2017
Published: 01 March 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported as part of the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award number DESC0001160. Y. Z. would like to acknowledge the China Scholarship Council (CSC, No. 201506680044) for financial support. The authors would like to acknowledge Dr. Dianxue Cao from Harbin Engineering University (China) for his kind guidance.

Return