Journal Home > Volume 10 , Issue 8

Flexible and easily reconfigurable supercapacitors show great promise for application in wearable electronics. In this study, multiwall C nanotubes (CNTs) decorated with hierarchical ultrathin zinc sulfide (ZnS) nanosheets (ZnS@CNT) are synthesized via a facile method. The resulting ZnS@CNT electrode, which delivers a high specific capacitance of 347.3 F·g–1 and an excellent cycling stability, can function as a high-performance electrode for a flexible all-solid-state supercapacitor using a polymer gel electrolyte. Our device exhibits a remarkable specific capacitance of 159.6 F·g–1, a high energy density of 22.3 W·h·kg–1, and a power density of 5 kW·kg–1. It also has high electrochemical performance even under bending or twisting. The all-solid-state supercapacitors can be easily integrated in series to power different commercial light-emitting diodes without an external bias voltage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor

Show Author's information Xiaoyi Hou1,2Tao Peng1,2Jinbing Cheng1,2Qiuhong Yu1,2Rongjie Luo1,2Yang Lu1,2Xianming Liu3Jang-Kyo Kim4Jun He5Yongsong Luo1,2( )
School of Physics and Electronic Engineering Xinyang Normal UniversityXinyang 464000 China
Key Laboratory of Advanced Micro/Nano Functional Materials Xinyang Normal UniversityXinyang 464000 China
College of Chemistry and Chemical Engineering Luoyang Normal UniversityLuoyang 471022 China
Department of Mechanical and Aerospace Engineering Hong Kong University of Science and Technology Clear Water Bay, KowloonHong Kong China
National Center for Nanoscience and TechnologyBeijing 100190 China

Abstract

Flexible and easily reconfigurable supercapacitors show great promise for application in wearable electronics. In this study, multiwall C nanotubes (CNTs) decorated with hierarchical ultrathin zinc sulfide (ZnS) nanosheets (ZnS@CNT) are synthesized via a facile method. The resulting ZnS@CNT electrode, which delivers a high specific capacitance of 347.3 F·g–1 and an excellent cycling stability, can function as a high-performance electrode for a flexible all-solid-state supercapacitor using a polymer gel electrolyte. Our device exhibits a remarkable specific capacitance of 159.6 F·g–1, a high energy density of 22.3 W·h·kg–1, and a power density of 5 kW·kg–1. It also has high electrochemical performance even under bending or twisting. The all-solid-state supercapacitors can be easily integrated in series to power different commercial light-emitting diodes without an external bias voltage.

Keywords: supercapacitor, flexible, ultrathin nanosheet, synergistic, multiwall C nanotubes decorated with hierarchical ultrathin zinc sulfide nanosheets(ZnS@CNT)

References(50)

1

 El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

2

 Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.

3

 Xiao, X.; Yuan, L. Y.; Zhong, J. W.; Ding, T. P.; Liu, Y.; Cai, Z. X.; Rong, Y. G.; Han, H. W.; Zhou, J.; Wang, Z. L. High- strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444.

4

 Zuo, W. H.; Zhu, W. H.; Zhao, D. F.; Sun, Y. F.; Li, Y. Y.; Liu, J. P.; Lou, X. W. Bismuth oxide: A versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 2016, 9, 2881–2891.

5

 Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566.

6

 Cheng, J. B.; Yan, H. L.; Lu, Y.; Qiu, K. W.; Hou, X. Y.; Xu, J. Y.; Han, L.; Liu, X. M.; Kim, J. K.; Luo, Y. S. Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 2015, 3, 9769–9776.

7

 Qiu, K. W.; Lu, Y.; Zhang, D. Y.; Cheng, J. B.; Yan, H. L.; Xu, J. Y.; Liu, X. M.; Kim, J. K.; Luo, Y. S. Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 2015, 11, 687–696.

8

 Zhang, D. Y.; Zhang, Y. H.; Li, X. W.; Luo, Y. S.; Huang, H. W.; Wang J. P.; Chu, P. K. Self-assembly of mesoporous ZnCo2O4 nanomaterials: Density functional theory calculation and flexible all-solid-state energy storage. J. Mater. Chem. A 2016, 4, 568–577.

9

 Zhang, Y.; Feng, H.; Wu, X. B.; Wang, L. Z.; Zhang, A. Q.; Xia, T. C.; Dong, H. C.; Li, X. F.; Zhang, L. S. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 2009, 34, 4889–4899.

10

Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

11

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

12

Zuo, W. H.; Wang, C.; Li, Y. Y.; Liu, J. P. Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: A case study of CNTs//Li4Ti5O12. Sci. Rep. 2015, 5, 7780.

13

Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R. et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423–1427.

14

Yuan, C. Z.; Yang, L.; Hou, L. R.; Li, J. Y.; Sun, Y. X.; Zhang, X. G.; Shen, L. F.; Lu, X. J.; Xiong, S. L.; Lou, X. W. Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 2012, 22, 2560–2566.

15

Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible micro- supercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068– 1072.

16

Liu, J. P.; Guan, C.; Zhou, C.; Fan, Z.; Ke, Q. Q.; Zhang, G. Z.; Liu, C.; Wang, J. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 2016, 28, 8732–8739.

17

Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin micro- supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

18

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

19

Li, R. Z.; Wang, Y. M.; Zhou, C.; Wang, C.; Ba, X.; Li, Y. Y.; Huang, X. T.; Liu, J. P. Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 2015, 25, 5384–5394.

20

Wang, B.; Chen, J. S.; Wang, Z. Y.; Madhavi, S.; Lou, X. W. Green synthesis of NiO nanobelts with exceptional pseudo- capacitive properties. Adv. Energy Mater. 2012, 2, 1188–1192.

21

Chen, Z.; Qin, Y. C.; Weng, D.; Xiao, Q. F.; Peng, Y. T.; Wang, X. L.; Li, H. X.; Wei, F.; Lu, Y. F. Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 2009, 19, 3420–3426.

22

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

23

Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267–272.

24

Jiang, S. L.; Shi, T. L.; Zhan, X. B.; Long, H.; Xi, S.; Hu, H.; Tang, Z. R. High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J. Power Sources 2014, 272, 16–23.

25

Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

26

Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970–975.

27

Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.

28

Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 2014, 3, 36–45.

29

Li, R. Z.; Lin, Z. J.; Ba, X.; Li, Y. Y.; Ding, R. M.; Liu, J. P. Integrated copper-nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors. Nanoscale Horiz. 2016, 1, 150–155.

30

Tian, W.; Zhang, C.; Zhai, T. Y.; Li, S. L.; Wang, X.; Li, J. W.; Jie, X.; Liu, D. Q.; Liao, M. Y.; Koide, Y. et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv. Mater. 2014, 26, 3088–3093.

31

Hu, L. F.; Chen, M.; Shan, W. Z.; Zhan, T. R.; Liao, M. Y.; Fang, X. S.; Hu, X. H.; Wu, L. M. Stacking-order-dependent optoelectronic properties of bilayer nanofilm photodetectors made from hollow ZnS and ZnO microspheres. Adv. Mater. 2012, 24, 5872–5877.

32

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

33

Chen, F. J.; Cao, Y. L.; Jia, D. Z. A facile route for the synthesis of ZnS rods with excellent photocatalytic activity. Chem. Eng. J. 2013, 234, 223–231.

34

Wu, H.; Wang, X. Y.; Jiang, L. L.; Wu, C.; Zhao, Q. L.; Liu, X.; Hu, B. A.; Yi, L. H. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. J. Power Sources 2013, 226, 202–209.

35

Giambastiani, G.; Cicchi, S.; Giannasi, A.; Luconi, L.; Rossin, A.; Mercuri, F.; Bianchini, C.; Brandi, A.; Melucci, M.; Ghini, G. et al. Functionalization of multiwalled carbon nanotubes with cyclic nitrones for materials and composites: Addressing the role of CNT sidewall defects. Chem. Mater. 2011, 23, 1923–1938.

36

Liu, B.; Zeng, H. C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater. 2008, 20, 2711–2718.

37

Pu, J.; Cui, F. L.; Chu, S. B.; Wang, T. T.; Sheng, E. H.; Wang, Z. H. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustainable Chem. Eng. 2014, 2, 809–815.

38

Xu, J.; Wang, Q. F.; Wang, X. W.; Xiang, Q. Y.; Liang, B.; Chen, D.; Shen, G. Z. Flexible asymmetric supercapacitors based upon Co9S8 Nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 2013, 7, 5453–5462.

39

Xu, Y. N.; Wang, X. F.; An, C. H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2014, 2, 16480–16488.

40

Reddy, R. N.; Reddy, R. G. Porous structured vanadium oxide electrode material for electrochemical capacitors. J. Power Sources 2006, 156, 700–704.

41

Zhang, B.; Liu, Y. S.; Huang, Z. D.; Oh, S.; Yu, Y.; Mai, Y. W.; Kim, J. K. Urchin-like Li4Ti5O12-carbon nanofiber composites for high rate performance anodes in Li-ion batteries. J. Mater. Chem. 2012, 22, 12133–12140.

42

Ma, F. X.; Yu, L.; Xu, C. Y.; Lou, X. W. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci. 2016, 9, 862–866.

43

Meng, Q. H.; Wu, H. P.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn micro- supercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100–4106.

44

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

45

Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 2010, 10, 4025–4031.

46

Zang, X. B.; Zhu, M.; Li, X.; Li, X. M.; Zhen, Z.; Lao, J. C.; Wang, K. L.; Kang, F. Y.; Wei, B. Q.; Zhu, H. W. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy 2015, 15, 83–91.

47

Zang, X. B.; Li, X.; Zhu, M.; Li, X. M.; Zhen, Z.; He, Y. J.; Wang, K. L.; Wei, J. Q.; Kang, F. Y.; Zhu, H. W. Graphene/ polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 2015, 7, 7318–7322.

48

Chee, W. K.; Lim, H. N.; Harrison, I.; Chong, K. F.; Zainal, Z.; Ng, C. H.; Huang, N. M. Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochem. Acta 2015, 157, 88–94.

49

Aravinda, L. S.; Nagaraja, K. K.; Nagaraja, H. S.; Bhat, K. U.; Bhat, B. R. ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochem. Acta 2013, 95, 119–124.

50

Liu, W. W.; Li, X.; Zhu, M. H.; He, X. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power Sources 2015, 282, 179–186.

File
nr-10-8-2570_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 November 2016
Revised: 21 December 2016
Accepted: 30 December 2016
Published: 27 March 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 61574122, 51502257, 21373107 and U1304108), the Innovative Research Team (in Science and Technology) in Universities in Henan Province (No. 13IRTSTHN018), the Key Project of Henan Educational Committee (No. 15A140035), and the program for Science & Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT018).

Return