Journal Home > Volume 10 , Issue 7

Mesoporous carbons have been widely utilized as the sulfur host for lithium-sulfur (Li-S) batteries. The ability to engineer the porosity, wall thickness, and graphitization degree of the carbon host is essential for addressing issues that hamper commercialization of Li-S batteries, such as fast capacity decay and poor high-rate performance. In this work, highly ordered, ultrathin mesoporous graphitic-carbon frameworks (MGFs) having unique cage-like mesoporosity, derived from self-assembled Fe3O4 nanoparticle superlattices, are demonstrated to be an excellent host for encapsulating sulfur. The resulting S@MGFs exhibit high specific capacity (1, 446 mAh·g-1 at 0.15 C), good rate capability (430 mAh·g-1 at 6 C), and exceptional cycling stability (~0.049% capacity decay per cycle at 1 C) when used as Li-S cathodes. The superior electrochemical performance of the S@MGFs is attributed to the many unique and advantageous structural features of MGFs. In addition to the interconnected, ultrathin graphitic-carbon framework that ensures rapid electron and lithium-ion transport, the microporous openings between adjacent mesopores efficiently suppress the diffusion of polysulfides, leading to improved capacity retention even at high current densities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries

Show Author's information Huijuan Yu1,2,§Hanwen Li1,2,§Shouyi Yuan1Yuchi Yang1,2Jiahui Zheng1,2Jianhua Hu2Dong Yang2( )Yonggang Wang1( )Angang Dong1( )
Collaborative Innovation Center of Chemistry for Energy MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan UniversityShanghai200433China
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan UniversityShanghai200433China

§ These authors contributed equally to this work.

Abstract

Mesoporous carbons have been widely utilized as the sulfur host for lithium-sulfur (Li-S) batteries. The ability to engineer the porosity, wall thickness, and graphitization degree of the carbon host is essential for addressing issues that hamper commercialization of Li-S batteries, such as fast capacity decay and poor high-rate performance. In this work, highly ordered, ultrathin mesoporous graphitic-carbon frameworks (MGFs) having unique cage-like mesoporosity, derived from self-assembled Fe3O4 nanoparticle superlattices, are demonstrated to be an excellent host for encapsulating sulfur. The resulting S@MGFs exhibit high specific capacity (1, 446 mAh·g-1 at 0.15 C), good rate capability (430 mAh·g-1 at 6 C), and exceptional cycling stability (~0.049% capacity decay per cycle at 1 C) when used as Li-S cathodes. The superior electrochemical performance of the S@MGFs is attributed to the many unique and advantageous structural features of MGFs. In addition to the interconnected, ultrathin graphitic-carbon framework that ensures rapid electron and lithium-ion transport, the microporous openings between adjacent mesopores efficiently suppress the diffusion of polysulfides, leading to improved capacity retention even at high current densities.

Keywords: self-assembly, nanoparticles, Li-S batteries, graphene frameworks, cage-like mesoporosity

References(69)

1

Bruce, P. G.; Scrosati, B.; Tarascon, J. -M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

2

Yu, S. -H.; Lee, S. H.; Lee, D. J.; Sung, Y. -E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146-2172.

3

Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

4

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.

5

Li, H. W.; Yu, H. J.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Dong, A. G.; Yang, D. Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem. Mater. 2016, 28, 1179-1186.

6

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

7

Zu, C. X.; Li, L. J.; Guo, J. H.; Wang, S. F.; Fan, D. L.; Manthiram, A. Understanding the redox obstacles in high sulfur-loading Li-S batteries and design of an advanced gel cathode. J. Phys. Chem. Lett. 2016, 7, 1392-1399.

8

Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167-3172.

9

Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500124.

10

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

11

Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015, 92, 41-63.

12

Pu, X.; Yang, G.; Yu, C. Liquid-type cathode enabled by 3D sponge-like carbon nanotubes for high energy density and long cycling life of Li-S batteries. Adv. Mater. 2014, 26, 7456-7461.

13

Ma, L.; Zhuang, H. L.; Wei, S. Y.; Hendrickson, K. E.; Kim, M. S.; Cohn, G.; Hennig, R. G.; Archer, L. A. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016, 10, 1050-1059.

14

Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. -M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 2016, 28, 3374-3382.

15

He, G.; Ji, X. L.; Nazar, L. High "C" rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878-2883.

16

He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 2013, 7, 10920-10930.

17

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium- sulfur batteries. Adv. Mater. 2015, 27, 6021-6028.

18

Pei, F.; An, T. H.; Zang, J.; Zhao, X. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 2016, 6, 1502539.

19

Yuan, S. Y.; Guo, Z. Y.; Wang, L.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery. Adv. Sci. 2015, 2, 1500071.

20

Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15-26.

21

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904-5908.

22

Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. 2012, 124, 3651-3655.

23

Sun, Q.; He, B.; Zhang, X. -Q.; Lu, A. -H. Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano 2015, 9, 8504-8513.

24

Liu, S. K.; Xie, K.; Chen, Z. X.; Li, Y. J.; Hong, X. B.; Xu, J.; Zhou, L. J.; Yuan, J. F.; Zheng, C. M. A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 11395-11402.

25

Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. -C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208-2213.

26

Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

27

Xu, Y. L.; Wang, J.; Chang, Z.; Ding, B.; Wang, Y.; Shen, L. F.; Mi, C. H.; Dou, H.; Zhang, X. G. Facile synthesis of nitrogen-containing mesoporous carbon for high-performance energy storage applications. Chem. —Eur. J. 2016, 22, 4256-4262.

28

Werner, J. G.; Johnson, S. S.; Vijay, V.; Wiesner, U. Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium- sulfur batteries. Chem. Mater. 2015, 27, 3349-3357.

29

Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135-1143.

30

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.

31

Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 3061-3070.

32

Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of three- dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.

33

Jiao, Y. C.; Han, D. D.; Liu, L. M.; Ji, L.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew. Chem., Int. Ed. 2015, 54, 5727-5731.

34

Ji, L.; Guo, G. N.; Sheng, H. Y.; Qin, S. L.; Wang, B. W.; Han, D. D.; Li, T. T.; Yang, D.; Dong, A. G. Free-standing, ordered mesoporous few-layer graphene framework films derived from nanocrystal superlattices self-assembled at the solid- or liquid-air interface. Chem. Mater. 2016, 28, 3823-3830.

35

Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295-9303.

36

Sun, L.; Wang, D. T.; Luo, Y. F.; Wang, K.; Kong, W. B.; Wu, Y.; Zhang, L.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H. et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. ACS Nano 2016, 10, 1300-1308.

37

Hu, H.; Cheng, H. Y.; Liu, Z. F.; Li, G. J.; Zhu, Q. C.; Yu, Y. In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries. Nano Lett. 2015, 15, 5116-5123.

38

Li, W. Y.; Liang, Z.; Lu, Z. D.; Yao, H. B.; Seh, Z. W.; Yan, K.; Zheng, G. Y.; Cui, Y. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 2015, 5, 1500211.

39

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644-2647.

40

Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2015, 6, 8850.

41

Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high- performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

42

He, G.; Hart, C. J.; Liang, X.; Garsuch, A.; Nazar, L. F. Stable cycling of a scalable graphene-encapsulated nanocomposite for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 10917-10923.

43

Chen, Y.; Lu, S. T.; Wu, X. H.; Liu, J. Flexible carbon nanotube-graphene/sulfur composite film: Free-standing cathode for high-performance lithium/sulfur batteries. J. Phys. Chem. C 2015, 119, 10288-10294.

44

He, G.; Mandlmeier, B.; Schuster, J.; Nazar, L. F.; Bein, T. Bimodal mesoporous carbon nanofibers with high porosity: Freestanding and embedded in membranes for lithium- sulfur batteries. Chem. Mater. 2014, 26, 3879-3886.

45

Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

46

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

47

Liu, J. H.; Li, W. F.; Duan, L. M.; Li, X.; Ji, L.; Geng, Z. B.; Huang, K. K.; Lu, L. H.; Zhou, L. S.; Liu, Z. R. et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 2015, 15, 5137-5142.

48

Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H. -K.; Dou, S. X.; Jeon, I. -Y.; Seo, J. -M.; Baek, J. -B.; Dai, L. M. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium sulfur batteries. ACS Nano 2014, 8, 10920-10930.

49

Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641-647.

50

Zhou, G. M.; Zhao, Y. B.; Manthiram, A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv. Energy Mater. 2015, 5, 1402263.

51

Zhou, W. D.; Guo, B. K.; Gao, H. C.; Goodenough, J. B. Low-cost higher loading of a sulfur cathode. Adv. Energy Mater. 2016, 6, 1502059.

52

Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine- coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250-5256.

53

Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539-9544.

54

Barchasz, C.; Lepretre, J. C.; Alloin, F.; Patoux, S. New insights into the limiting parameters of the Li/S rechargeable cell. J. Power Sources 2012, 199, 322-330.

55

Park, K.; Cho, J. H.; Jang, J. -H.; Yu, B. -C.; De La Hoz, A. T.; Miller, K. M.; Ellison, C. J.; Goodenough, J. B. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 2015, 8, 2389-2395.

56

Zhao, C. T.; Yu, C.; Zhang, M. D.; Yang, J.; Liu, S. H.; Li, M. Y.; Han, X. T.; Dong, Y. F.; Qiu, J. S. Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template- directed assembly for high-performance Li-S batteries. J. Mater. Chem. A 2015, 3, 21842-21848.

57

Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926-6931.

58

Zeng, L. C.; Jiang, Y.; Xu, J.; Wang, M.; Li, W. H.; Yu, Y. Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries. Nanoscale 2015, 7, 10940-10949.

59

Li, Y. -J.; Fan, J. -M.; Zheng, M. -S.; Dong, Q. -F. A novel synergistic composite with multi-functional effects for high- performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998-2004.

60

Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491-496.

61

Gu, X. X.; Lai, C.; Liu, F.; Yang, W. L.; Hou, Y. L.; Zhang, S. Q. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J. Mater. Chem. A 2015, 3, 9502-9509.

62

You, Y.; Zeng, W. C.; Yin, Y. -X.; Zhang, J.; Yang, C. -P.; Zhu, Y. W.; Guo, Y. -G. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries. J. Mater. Chem. A 2015, 3, 4799-4802.

63

Yuan, S. Y.; Bao, J. L.; Wang, L.; Xia, Y. Y.; Truhlar, D. G.; Wang, Y. G. Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv. Energy Mater. 2016, 6, 1501733.

64

Rehman, S.; Gu, X. X.; Khan, K.; Mahmood, N.; Yang, W. L.; Huang, X. X.; Guo, S. J.; Hou, Y. L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1502518.

65

Xu, H. H.; Qie, L.; Manthiram, A. An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode. Nano Energy 2016, 26, 224-232.

66

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. High- performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater. 2016, 6, 1501355.

67

Tang, C.; Li, B. -Q.; Zhang, Q.; Zhu, L.; Wang, H. -F.; Shi, J. -L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577-585.

68

Gu, X. X.; Tong, C. -J.; Lai, C.; Qiu, J. X.; Huang, X. X.; Yang, W. X.; Wen, B.; Liu, L. -M.; Hou, Y. L.; Zhang, S. Q. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries. J. Mater. Chem. A 2015, 3, 16670-16678.

69

Zheng, Z. M.; Guo, H. C.; Pei, F.; Zhang, X.; Chen, X. Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 2016, 26, 8952-8959.

File
nr-10-7-2495_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 November 2016
Revised: 12 December 2016
Accepted: 01 January 2017
Published: 04 April 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

A. G. D. acknowledges the financial support from the National Basic Research Program of China (No. 2014CB845602), Natural National Science Foundation of China (No. 21373052), and Shanghai International Science and Technology Cooperation Project (No. 15520720100). D. Y. is grateful for financial support from Natural National Science Foundation of China (Nos. 51373035, 51373040, 51573030, and 51573028), and International Science and Technology Cooperation Program of China (No. 2014DFE40130).

Return