Journal Home > Volume 10 , Issue 7

A TiO2 heterostructure modified with carbon nitride nanosheets (CN-NSs) has been synthesized via a direct interfacial assembly strategy. The CN-NSs, which have a unique two-dimensional structure, were favorable for supporting TiO2 nanoparticles (NPs). The uniform dispersion of TiO2 NPs on the surface of the CN-NSs creates sufficient interfacial contact at their nanojunctions, as was confirmed by electron microscopy analyses. In comparison with other reported metal oxide/CN composites, the strong interactions of the ultrathin CN-NSs layers with the TiO2 nanoparticles restrain their re-stacking, which results in a large specific surface area of 234.0 m2·g-1. The results indicate that the optimized TiO2/CN-NSs hybrid exhibits remarkably enhanced photocatalytic efficiency for dye degradation (with k of 0.167 min-1 under full spectrum) and H2 production (with apparent quantum yield = 38.4% for λ = 400 ± 15 nm monochromatic light). This can be ascribed to the improved surface area and quantum efficiency of the hybrid, with a controlled ratio that reaches the appropriate balance between producing sufficient nanojunctions and absorbing enough photons. Furthermore, based on the identification of the main active species for photodegradation, and the confirmation of active sites for H2 evolution, the charge transfer pathway across the TiO2/CN-NSs interface under simulated solar light is proposed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly

Show Author's information Zili Xu1,§Chuansheng Zhuang2,§Zhijuan Zou1Jingyu Wang1( )Xiaochan Xu1Tianyou Peng2( )
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China

§ These authors contributed equally to this work.

Abstract

A TiO2 heterostructure modified with carbon nitride nanosheets (CN-NSs) has been synthesized via a direct interfacial assembly strategy. The CN-NSs, which have a unique two-dimensional structure, were favorable for supporting TiO2 nanoparticles (NPs). The uniform dispersion of TiO2 NPs on the surface of the CN-NSs creates sufficient interfacial contact at their nanojunctions, as was confirmed by electron microscopy analyses. In comparison with other reported metal oxide/CN composites, the strong interactions of the ultrathin CN-NSs layers with the TiO2 nanoparticles restrain their re-stacking, which results in a large specific surface area of 234.0 m2·g-1. The results indicate that the optimized TiO2/CN-NSs hybrid exhibits remarkably enhanced photocatalytic efficiency for dye degradation (with k of 0.167 min-1 under full spectrum) and H2 production (with apparent quantum yield = 38.4% for λ = 400 ± 15 nm monochromatic light). This can be ascribed to the improved surface area and quantum efficiency of the hybrid, with a controlled ratio that reaches the appropriate balance between producing sufficient nanojunctions and absorbing enough photons. Furthermore, based on the identification of the main active species for photodegradation, and the confirmation of active sites for H2 evolution, the charge transfer pathway across the TiO2/CN-NSs interface under simulated solar light is proposed.

Keywords: TiO2, high surface area, carbon nitride nanosheets, hybrid photocatalyst, interfacial assembly

References(55)

1

Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824-9852.

2

Lang, X. J.; Ma, W. H.; Chen, C. C.; Ji, H. W.; Zhao, J. C. Selective aerobic oxidation mediated by TiO2 photocatalysis. Acc. Chem. Res. 2014, 47, 355-363.

3

Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987-10043.

4

Zhao, D.; Yang, C. F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew. Sust. Energ. Rev. 2016, 54, 1048-1059.

5

Hao, R. R.; Wang, G. H.; Tang, H.; Sun, L. L.; Xu, C.; Han, D. Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B: Environ. 2016, 187, 47-58.

6

Jiang, Z. F.; Zhu, C. Z.; Wan, W. M.; Qian, K.; Xie, J. M. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 2016, 4, 1806-1818.

7

Sridharan, K.; Jang, E. Y.; Park, T. J. Novel visible light active graphitic C3N4-TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142-143, 718-728.

8

Yu, J. G.; Wang, S. H.; Low, J. X.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883-16890.

9

Muñoz-Batista, M. J.; Kubacka, A.; Fernández-García, G. Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catal. Sci. Technol. 2014, 4, 2006-2015.

10

Gu, L.; Wang, J. Y.; Zou, Z. J.; Han, X. J. Graphitic-C3N4-hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. J. Hazard. Mater. 2014, 268, 216-223.

11

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830-1834.

12

Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718-1728.

13

Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Ye, L. Q.; Zan, L. Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal. Sci. Technol. 2013, 3, 1253-1260.

14

Xu, L.; Huang, W. Q.; Wang, L. L.; Tian, Z. A.; Hu, W. Y.; Ma, Y. M.; Wang, X.; Pan, A. L.; Huang, G. F. Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: The role of oxygen. Chem. Mater. 2015, 27, 1612-1621.

15

Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18-21.

16

Ma, T. Y.; Tang, Y. H.; Dai, S.; Qiao, S. Z. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: An excellent metal-/label-free biosensing platform. Small 2014, 10, 2382-2389.

17

Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766-14772.

18

Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730-1733.

19

Cheng, F. X.; Wang, H. N.; Dong, X. P. The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem. Commun. 2015, 51, 7176-7179.

20

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199-1209.

21

Li, Y. L.; Wang, J. S.; Yang, Y. L.; Zhang, Y.; He, D.; An, Q. E.; Cao, G. Z. Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. J. Hazard. Mater. 2015, 292, 79-89.

22

Tong, Z. W.; Yang, D.; Xiao, T. X.; Tian, Y.; Jiang, Z. Y. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 2015, 260, 117-125.

23

Paek, S. M.; Jung, H.; Park, M.; Lee, J. K.; Choy, J. H. An inorganic nanohybrid with high specific surface area: TiO2-pillared MoS2. Chem. Mater. 2005, 17, 3492-3498.

24

Qiu, B. C.; Li, Q. Y.; Shen, B.; Xing, M. Y.; Zhang, J. L. Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent photo-Fenton reaction and high-performance lithium storage. Appl. Catal. B: Environ. 2016, 183, 216-223.

25

Su, D.; Wang, J. Y.; Tang, Y. P.; Liu, C.; Liu, L. F.; Han, X. J. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy. Chem. Commun. 2011, 47, 4231-4233.

26

Wang, J. Y.; Zhao, Y. Z.; Xu, X. C.; Feng, X. L.; Yu, J. X.; Li, T. A facile interfacial assembling strategy for synthesizing yellow TiO2 flakes with a narrowed bandgap. RSC Adv. 2015, 5, 58176-58183.

27

Wang, J. Y.; Han, X. J.; Liu, C.; Zhang, W.; Cai, R. X.; Liu, Z. H. Adjusting the crystal phase and morphology of titania via a soft chemical process. Cryst. Growth Des. 2010, 10, 2185-2191.

28

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757-770.

29

Gu, L. A.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 2013, 5, 3085-3093.

30

Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634-4639.

31

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595-5599.

32

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452-2456.

33

Feng, H. B.; Wu, Y. M.; Li, J. H. Direct exfoliation of graphite to graphene by a facile chemical approach. Small 2014, 10, 2233-2238.

34

Feng, H. B.; Cheng, R.; Zhao, X.; Duan, X. F.; Li, J. H. A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 2013, 4, 1539.

35

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 1985, 57, 603-619.

36

Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317-10324.

37

Nguyen, P. T. M.; Fan, C. Y.; Do, D. D.; Nicholson, D. On the cavitation-like pore blocking in ink-bottle pore: Evolution of hysteresis loop with neck size. J. Phys. Chem. C 2013, 117, 5475-5484.

38

Pandiselvi, K.; Fang, H. F.; Huang, X. B.; Wang, J. Y.; Xu, X. C.; Li, T. Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. J. Hazard. Mater. 2016, 314, 67-77.

39

Zhang, Z. Y.; Liu, K. C.; Feng, Z. Q.; Bao, Y. N.; Dong, B. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 2016, 6, 19221.

40

Castarlenas, S.; Rubio, C.; Mayoral, Á.; Téllez, C.; Coronas, J. Few-layer graphene by assisted-exfoliation of graphite with layered silicate. Carbon 2014, 73, 99-105.

41

He, F.; Chen, G.; Yu, Y. G.; Hao, S.; Zhou, Y. S.; Zheng, Y. Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl. Mater. Interfaces 2014, 6, 7171-7179.

42

Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017-12019.

43

Lin, L.; Li, M.; Jiang, L. Q.; Li, Y. F.; Liu, D. J.; He, X. Q.; Cui, L. L. A novel iron (Ⅱ) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium. J. Power Sources 2014, 268, 269-278.

44

Jiang, Y. Y.; Lu, Y. Z.; Lv, X. Y.; Han, D. X.; Zhang, Q. X.; Niu, L.; Chen, W. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 2013, 3, 1263-1271.

45

Jiang, Z. Z.; Wang, Z. B.; Chu, Y. Y.; Gu, D. M.; Yin, G. P. Ultrahigh stable carbon riveted Pt/TiO2-C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy Environ. Sci. 2011, 4, 728-735.

46

Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979; pp 68-69.

47

Cheng, H.; Feng, X. L.; Wang, D. L.; Xu, M.; Pandiselvi, K.; Wang, J. Y.; Zou, Z. J.; Li, T. Synthesis of highly stable and methanol-tolerant electrocatalyst for oxygen reduction: Co supporting on N-doped-C hybridized TiO2. Electrochim. Acta 2015, 180, 564-573.

48

Wang, J. Y.; Liu, Z. H.; Cai, R. X. A new role for Fe3+ in TiO2 hydrosol: Accelerated photodegradation of dyes under visible light. Environ. Sci. Technol. 2008, 42, 5759-5764.

49

Tran, T. H.; Nosaka, A. Y.; Nosaka, Y. Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J. Phys. Chem. B 2006, 110, 25525-25531.

50

Liu, H.; Jin, Z. T.; Xu, Z. Z. Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets: A visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants. Dalton Trans. 2015, 44, 14368-14375.

51

Hu, J. H.; Wang, L. J.; Zhang, P.; Liang, C. H.; Shao, G. S. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J. Power Sources 2016, 328, 28-36.

52

Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380-386.

53

Jiang, X. L; Fu, X. L; Zhang, L.; Meng, S. G.; Chen, S. F. Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: Fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. J. Mater. Chem. A 2015, 3, 2271-2282.

54

Huang, Z. A.; Sun, Q.; Lv, K. L.; Zhang, Z. H.; Li, M.; Li, B. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs. (101) facets of TiO2. Appl. Catal. B: Environ. 2015, 164, 420-427.

55

Zhang, H.; Guo, L. H.; Zhao, L. X.; Wan, B.; Yang, Y. Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett. 2015, 6, 958-963.

File
nr-10-7-2193_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2016
Revised: 27 December 2016
Accepted: 01 January 2017
Published: 24 March 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We thank the Analysis and Testing Center, Huazhong University of Science and Technology for their assistance in characterization of materials. This work is supported by the National Natural Science Foundation of China (No. 21571071), Hubei Provincial Natural Science Foundation of China (No. 2015CFB313), and the Fundamental Research Funds for the Central Universities (No. 2015QN183).

Return