Journal Home > Volume 10 , Issue 4

Light-activated dynamic variations have promoted the development of smart interfaces, especially nano-biointerfaces. In this article, the near-infrared (NIR)- responsive surface for controlling cell adhesion was designed by grafting a thermal responsive polymer (poly(N-isopropylacrylamide), PNIPAM) onto silicon nanowires (SiNWs) instead of the traditional photosensitive moieties. NIR induced the photothermal effect of the SiNWs, and the local heat induced thermodynamic phase transformation of PNIPAM. With the application of NIR radiation, the surface turned to a hydrophobic state, and restored to the hydrophilic state when NIR was switched off, leading to reversible cell adhesion and release. The switchable wettability of the surface and cell adhesion/release occurred efficiently even after 20 cycles. Proteins were anchored on the surface via hydrophobic interactions using NIR; further connection of a cell-capture agent helped in achieving specific cell capture. This dynamic control of cell adhesion via NIR may provide new clues for designing functional nano-biointerfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Near-infrared (NIR) controlled reversible cell adhesion on a responsive nano-biointerface

Show Author's information Haijun Cui1,2Pengchao Zhang2,3Wenshuo Wang1,2Guannan Li2,3Yuwei Hao2,3Luying Wang2,3Shutao Wang1,2( )
CAS Key Laboratory of Bio-inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences (CAS)Beijing100190China
University of Chinese Academy of Sciences (UCAS)Beijing100049China
Beijing National Laboratory for Molecular Sciences (BNLMS)Institute of ChemistryChinese Academy of SciencesBeijing100190China

Abstract

Light-activated dynamic variations have promoted the development of smart interfaces, especially nano-biointerfaces. In this article, the near-infrared (NIR)- responsive surface for controlling cell adhesion was designed by grafting a thermal responsive polymer (poly(N-isopropylacrylamide), PNIPAM) onto silicon nanowires (SiNWs) instead of the traditional photosensitive moieties. NIR induced the photothermal effect of the SiNWs, and the local heat induced thermodynamic phase transformation of PNIPAM. With the application of NIR radiation, the surface turned to a hydrophobic state, and restored to the hydrophilic state when NIR was switched off, leading to reversible cell adhesion and release. The switchable wettability of the surface and cell adhesion/release occurred efficiently even after 20 cycles. Proteins were anchored on the surface via hydrophobic interactions using NIR; further connection of a cell-capture agent helped in achieving specific cell capture. This dynamic control of cell adhesion via NIR may provide new clues for designing functional nano-biointerfaces.

Keywords: nanostructures, cell adhesion, photothermal effect, bio-interface, hydrophobic interaction

References(54)

1

Mager, M. D.; LaPointe, V.; Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 2011, 3, 582–589.

2

Sachs, N.; Sonnenberg, A. Cell-matrix adhesion of podocytes in physiology and disease. Nat. Rev. Nephrol. 2013, 9, 200–210.

3

Sekine, H.; Shimizu, T.; Sakaguchi, K.; Dobashi, I.; Wada, M.; Yamato, M.; Kobayashi, E.; Umezu, M.; Okano, T. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat. Commun. 2013, 4, 1399–1409.

4

Liu, X. L.; Wang, S. T. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem. Soc. Rev. 2014, 43, 2385–2401.

5

Sun, T. L.; Qing, G. Y.; Su, B. L.; Jiang, L. Functional biointerface materials inspired from nature. Chem. Soc. Rev. 2011, 40, 2909–2921.

6

Okano, T.; Yamada, N.; Okuhara, M.; Sakai, H.; Sakurai, Y. Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials 1995, 16, 297–303.

7

Yeo, W. -S.; Yousaf, M. N.; Mrksich, M. Dynamic interfaces between cells and surfaces: Electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 2003, 125, 14994–14995.

8

Ito, A.; Ino, K.; Kobayashi, T.; Honda, H. The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 2005, 26, 6185–6193.

9

Ohmuro-Matsuyama, Y.; Tatsu, Y. Photocontrolled cell adhesion on a surface functionalized with a caged arginine- glycine-aspartate peptide. Angew. Chem., Int. Ed. 2008, 47, 7527–7529.

10

Petersen, S.; Alonso, J. M.; Specht, A.; Duodu, P.; Goeldner, M.; del Campo, A. Phototriggering of cell adhesion by caged cyclic rgd peptides. Angew. Chem., Int. Ed. 2008, 47, 3192–3195.

11

Wischerhoff, E.; Uhlig, K.; Lankenau, A.; Börner, H. G.; Laschewsky, A.; Duschl, C.; Lutz, J. F. Controlled cell adhesion on PEG-based switchable surfaces. Angew. Chem., Int. Ed. 2008, 47, 5666–5668.

12

Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009, 324, 59–63.

13

Jeon, S.; Moon, J. M.; Lee, E. S.; Kim, Y. H.; Cho, Y. An electroactive biotin-doped polypyrrole substrate that immobilizes and releases EpCAM-positive cancer cells. Angew. Chem., Int. Ed. 2014, 53, 4597–4602.

14

Pan, G. Q.; Guo, B. B.; Ma, Y.; Cui, W. G.; He, F.; Li, B.; Yang, H. L.; Shea, K. J. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J. Am. Chem. Soc. 2014, 136, 6203–6206.

15

Sakuma, M.; Kumashiro, Y.; Nakayama, M.; Tanaka, N.; Umemura, K.; Yamato, M.; Okano, T. Thermoresponsive nanostructured surfaces generated by the langmuir–schaefer method are suitable for cell sheet fabrication. Biomacro­molecules 2014, 15, 4160–4167.

16

Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.

17

Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near- infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

18

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433– 3440.

19

Wirkner, M.; Alonso, J. M.; Maus, V.; Salierno, M.; Lee, T. T.; García, A. J.; del Campo, A. Triggered cell release from materials using bioadhesive photocleavable linkers. Adv. Mater. 2011, 23, 3907–3910.

20

Li, W.; Wang, J. S.; Ren, J. S.; Qu, X. G. Near-infrared upconversion controls photocaged cell adhesion. J. Am. Chem. Soc. 2014, 136, 2248–2251.

21

Lee, T. T.; García, J. R.; Paez, J. I.; Singh, A.; Phelps, E. A.; Weis, S.; Shafiq, Z.; Shekaran, A.; Del Campo, A.; García, A. J. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 2015, 14, 352–360.

22

Auernheimer, J.; Dahmen, C.; Hersel, U.; Bausch, A.; Kessler, H. Photoswitched cell adhesion on surfaces with rgd peptides. J. Am. Chem. Soc. 2005, 127, 16107–16110.

23

Liu, D. B.; Xie, Y. Y.; Shao, H. W.; Jiang, X. Y. Using azobenzene-embedded self-assembled monolayers to photo­chemically control cell adhesion reversibly. Angew. Chem., Int. Ed. 2009, 48, 4406–4408.

24

Wang, N.; Li, Y. M.; Zhang, Y. Y.; Liao, Y.; Liu, W. G. High-strength photoresponsive hydrogels enable surface- mediated gene delivery and light-induced reversible cell adhesion/detachment. Langmuir 2014, 30, 11823–11832.

25

Li, W.; Chen, Z. W.; Zhou, L.; Li, Z. H.; Ren, J. S.; Qu, X. G. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization. J. Am. Chem. Soc. 2015, 137, 8199–8205.

26

Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

27

Han, S. Y.; Deng, R. R.; Xie, X. J.; Liu, X. G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 11702–11715.

28

Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378–1385.

29

Sun, Y.; Feng, W.; Yang, P. Y.; Huang, C. H.; Li, F. Y. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1509–1525.

30

Ray, P. C.; Khan, S. A.; Singh, A. K.; Senapati, D.; Fan, Z. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 2012, 41, 3193–3209.

31

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

32

Wang, C.; Xu, L. G.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with Anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154–8162.

33

Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384–392.

34

Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

35

Moon, G. D.; Choi, S. W.; Cai, X.; Li, W. Y.; Cho, E. C.; Jeong, U.; Wang, L. V.; Xia, Y. N. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 2011, 133, 4762–4765.

36

Wang, J.; Wei, Y. R.; Hu, X. X.; Fang, Y. Y.; Li, X. Y.; Liu, J.; Wang, S. F.; Yuan, Q. Protein activity regulation: Inhibition by closed-loop aptamer-based structures and restoration by near-IR stimulation. J. Am. Chem. Soc. 2015, 137, 10576–10584.

37

Kim, J. D.; Heo, J. S.; Park, T.; Park, C.; Kim, H. O.; Kim, E. Photothermally induced local dissociation of collagens for harvesting of cell sheets. Angew. Chem., Int. Ed. 2015, 54, 5869–5873.

38

Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. D. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.

39

Peng, K. Q.; Lee, S. T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 2011, 23, 198–215.

40

Su, Y. Y.; Wei, X. P.; Peng, F.; Zhong, Y. L.; Lu, Y. M.; Su, S.; Xu, T. T.; Lee, S. T.; He, Y. Gold nanoparticles- decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 2012, 12, 1845–1850.

41

Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. -T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

42

Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macro­molecules 2012, 45, 4015–4039.

43

Li, B.; Yu, B.; Ye, Q.; Zhou, F. Tapping the potential of polymer brushes through synthesis. Acc. Chem. Res. 2015, 48, 229–237.

44

Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 2002, 14, 1164–1167.

DOI
45

Chen, L.; Liu, X. L.; Su, B.; Li, J.; Jiang, L.; Han, D.; Wang, S. T. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 2011, 23, 4376–4380.

46

Liu, H. L.; Li, Y. Y.; Sun, K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.; Jiang, L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 2013, 135, 7603–7609.

47

Zhang, P. C.; Chen, L.; Xu, T. L.; Liu, H. L.; Liu, X. L.; Meng, J. X.; Yang, G.; Jiang, L.; Wang, S. T. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv. Mater. 2013, 25, 3566–3570.

48

Meng, J. X.; Zhang, P. C.; Zhang, F. L.; Liu, H. L.; Fan, J. B.; Liu, X. L.; Yang, G.; Jiang, L.; Wang, S. T. A self-cleaning TiO2 nanosisal-like coating toward disposing nanobiochips of cancer detection. ACS Nano 2015, 9, 9284–9291.

49

Zhang, F. L.; Jiang, Y.; Liu, X. L.; Meng, J. X.; Zhang, P. C.; Liu, H. L.; Yang, G.; Li, G. N.; Jiang, L.; Wan, L. J. et al. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Lett. 2016, 16, 766–772.

50

Liu, H. L.; Liu, X. L.; Meng, J. X.; Zhang, P. C.; Yang, G.; Su, B.; Sun, K.; Chen, L.; Han, D.; Wang, S. T. et al. Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv. Mater. 2013, 25, 922–927.

51

Liu, X. L.; Chen, L.; Liu, H. L.; Yang, G.; Zhang, P. C.; Han, D.; Wang, S. T.; Jiang, L. Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Mater. 2013, 5, e63.

52

Wang, L. Y.; Liu, H. L.; Zhang, F. L.; Li, G. N.; Wang, S. T. Smart thin hydrogel coatings harnessing hydrophobicity and topography to capture and release cancer cells. Small 2016, 12, 4697–4701.

53

Xue, C. Y.; Choi, B. -C.; Choi, S.; Braun, P. V.; Leckband, D. E. Protein adsorption modes determine reversible cell attachment on poly(N-isopropyl acrylamide) brushes. Adv. Funct. Mater. 2012, 22, 2394–2401.

54

Zhang, N. G.; Deng, Y. L.; Tai, Q. D.; Cheng, B. R.; Zhao, L. B.; Shen, Q. L.; He, R. X.; Hong, L. Y.; Liu, W.; Guo, S. S. et al. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 2012, 24, 2756–2760.

File
nr-10-4-1345_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2016
Revised: 27 December 2016
Accepted: 30 December 2016
Published: 21 February 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This research is supported by the National Basic Research Program of China (No. 2012CB933800), National Natural Science Foundation of China (Nos. 21425314, 21501184, 21434009, 21421061 and 21504098), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M01), the National High-tech R & D Program of China (863 Program) (No. 2013AA032203), MOST (No. 2013YQ190467), the Top-Notch Young Talents Program of China, and Beijing Municipal Science & Technology Commission (No. Z161100000116037).

Return