Journal Home > Volume 10 , Issue 7

Fast charge transfer and anti-photocorrosion are two crucial factors for developing efficient, durable photoanodes for photoelectrochemical (PEC) cells. Reduced graphene oxide (RGO) is a promising photoanode element that can provide both of these. In this study, we elucidated the roles of RGO in the charge transfer and surface passivation of photoanodes by the precise design of a RGO-wrapped photoanode and examination of its PEC properties. Arrays of hetero-nanorods (HNRs) with three different designs were fabricated as photoanodes using RGO, CdSe nanoparticles (NPs), and ZnO nanorods (NRs) as building blocks. CdSe@ZnO HNRs were prepared by decorating ZnO NRs with CdSe NPs. Finite-element analysis and experimental studies demonstrated that in the CdSe@ZnO HNRs, if only the ZnO NRs were wrapped by RGO, the conductivity between CdSe and ZnO was enhanced by RGO to shuttle charges. If RGO only surrounded the outside of the CdSe@ZnO HNRs, the corrosion was slowed owing to the passivation effect of RGO, which increased the electron lifetime of the photoanode. If both CdSe and ZnO were fully wrapped by RGO, the advantages of the two aforementioned cases were both obtained. RGO-wrapped CdSe@ZnO HNRs with position-controlled designs are promising photoanode materials with a high PEC efficiency, and the developed synthesis process can be applied to explore the design and fabrication of next-generation photoanodes using RGO as a building block.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design and roles of RGO-wrapping in charge transfer and surface passivation in photoelectrochemical enhancement of cascade-band photoanode

Show Author's information Zhuo Zhang1Mingi Choi1Minki Baek1Insung Hwang1Changshin Cho2Zexiang Deng3Jinwoo Lee2Kijung Yong1( )
Surface Chemistry Laboratory of Electronic Materials Department of Chemical Engineering POSTECH Pohang 790-784 Republic of Korea
Advanced Functional Nanomaterial Laboratory Department of Chemical Engineering POSTECH Pohang 790-784 Republic of Korea
State Key Laboratory of Optoelectronic Materials and Technologies School of Physics and Engineering Sun Yat-Sen University Guangzhou 510275 China

Abstract

Fast charge transfer and anti-photocorrosion are two crucial factors for developing efficient, durable photoanodes for photoelectrochemical (PEC) cells. Reduced graphene oxide (RGO) is a promising photoanode element that can provide both of these. In this study, we elucidated the roles of RGO in the charge transfer and surface passivation of photoanodes by the precise design of a RGO-wrapped photoanode and examination of its PEC properties. Arrays of hetero-nanorods (HNRs) with three different designs were fabricated as photoanodes using RGO, CdSe nanoparticles (NPs), and ZnO nanorods (NRs) as building blocks. CdSe@ZnO HNRs were prepared by decorating ZnO NRs with CdSe NPs. Finite-element analysis and experimental studies demonstrated that in the CdSe@ZnO HNRs, if only the ZnO NRs were wrapped by RGO, the conductivity between CdSe and ZnO was enhanced by RGO to shuttle charges. If RGO only surrounded the outside of the CdSe@ZnO HNRs, the corrosion was slowed owing to the passivation effect of RGO, which increased the electron lifetime of the photoanode. If both CdSe and ZnO were fully wrapped by RGO, the advantages of the two aforementioned cases were both obtained. RGO-wrapped CdSe@ZnO HNRs with position-controlled designs are promising photoanode materials with a high PEC efficiency, and the developed synthesis process can be applied to explore the design and fabrication of next-generation photoanodes using RGO as a building block.

Keywords: charge transfer, ZnO, photoelectrochemical, surface passivation, CdSe, reduced graphene oxide (RGO)

References(53)

1

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.

2

Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456-461.

3

Cha, H. G.; Choi, K. -S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 2015, 7, 328-333.

4

Liu, Q. H.; He, J. F.; Yao, T.; Sun, Z. H.; Cheng, W. R.; He, S.; Xie, Y.; Peng, Y. H.; Cheng, H.; Sun, Y. F. et al. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 2014, 5, 5122.

5

Licht, S. A description of energy conversion in photoelectrochemical solar cells. Nature 1987, 330, 148-151.

6

Rubin, H. D.; Humphrey, B. D.; Bocarsly, A. B. Role of surface reactions in the stabilization of N-Cds-based photoelectrochemical cells. Nature 1984, 308, 339-341.

7

Li, R. G.; Zhang, F. X.; Wang, D. G.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

8

Warren, S. C.; Voïtchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.; Hébert, C.; Rothschild, A.; Grätzel, M. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 2013, 12, 842-849.

9

Liu, B.; Wu, C. H.; Miao, J. W.; Yang, P. D. All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano 2014, 8, 11739-11744.

10

Kargar, A.; Sun, K.; Jing, Y.; Choi, C.; Jeong, H.; Jung, G. Y.; Jin S.; Wan, D. L. 3D branched nanowire photoelectrochemical electrodes for efficient solar water splitting. ACS Nano 2013, 7, 9407-9415.

11

Tsang, M. Y.; Pridmore, N. E.; Gillie, L. J.; Chou, Y. H.; Brydson, R.; Douthwaite, R. E. Enhanced photocatalytic hydrogen generation using polymorphic macroporous TaON. Adv. Mater. 2012, 24, 3406-3409.

12

Duong, T. T.; Nguyen, Q. D.; Hong, S. K.; Kim, D.; Yoon S. G.; Pham, T. H. Enhanced photoelectrochemical activity of the TiO2/ITO nanocomposites grown onto single-walled carbon nanotubes at a low temperature by nanocluster deposition. Adv. Mater. 2011, 23, 5557-5562.

13

Spurgeon, J. M.; Boettcher, S. W.; Kelzenberg, M. D.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible, polymer-supported, Si wire array photoelectrodes. Adv. Mater. 2010, 22, 3277-3281.

14

Zhang, Z.; Choi, M.; Baek, M.; Deng, Z. X.; Yong, K. Plasmonic and passivation effects of Au decorated RGO@Cdse nanofilm uplifted by Cdse@Zno nanorods with photoelectrochemical enhancement. Nano Energy 2016, 21, 185-197.

15

Hou, J. G.; Yang, C.; Cheng, H. J.; Jiao, S. Q.; Takeda, O.; Zhu, H. M. High-performance P-Cu2O/N-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3758-3768.

16

Zhang, Y. C.; Jiang, S. Q.; Song, W. J.; Zhou, P.; Ji, H. W.; Ma, W. H.; Hao, W. C.; Chen, C. C.; Zhao, J. C. Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity. Energy Environ. Sci. 2015, 8, 1231-1236.

17

Zhou, M.; Bao, J.; Xu, Y.; Zhang, J. J.; Xie, J. F.; Guan, M. L.; Wang, C. L.; Wen, L. Y.; Lei, Y.; Xie, Y. Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 2014, 8, 7088-7098.

18

Bao, J. M. Photoelectrochemical water splitting: A new use for bandgap engineering. Nat. Nanotechnol. 2015, 10, 19-20.

19

Moniz, S. J. A.; Zhu, J.; Tang, J. W. 1D Co-Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage. Adv. Energy Mater. 2014, 4, 1301590.

20

Allen, M. T.; Shtanko, O.; Fulga, I. C.; Akhmerov, A. R.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Levitov, L. S.; Yacoby, A. Spatially resolved edge currents and guided-wave electronic states in graphene. Nat. Phys. 2015, 12, 128-133.

21

Brenneis, A.; Gaudreau, L.; Seifert, M.; Karl, H.; Brandt, M. S.; Huebl, H.; Garrido, J. A.; Koppens, F. H. L.; Holleitner, A. W. Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. Nat. Nanotechnol. 2015, 10, 135-139.

22

Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y. F.; Ajayan, P. M.; Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217-222.

23

Yu, L. H.; Zheng, J. J.; Xu, Y.; Dai, D. X.; He, S. L. Local and nonlocal optically induced transparency effects in graphene- silicon hybrid nanophotonic integrated circuits. ACS Nano 2014, 8, 11386-11393.

24

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.

25

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

26

Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705-1708.

27

Liu, Z. K.; Li, J. H.; Yan, F. Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 2013, 25, 4296-4301.

28

Miao, X. C.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745-2750.

29

Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820-3839.

30

Meidanchi, A.; Akhavan, O. Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewater purification. Carbon 2014, 69, 230-238.

31

Hou, Y.; Zuo, F.; Dagg, A. P.; Liu, J. K.; Feng, P. Y. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 2014, 26, 5043-5049.

32

Mukherji, A.; Seger, B.; Lu, G. Q.; Wang, L. Z. Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 2011, 5, 3483-3492.

33

Sim, U.; Yang, T. Y.; Moon, J.; An, J.; Hwang, J.; Seo, J. H.; Lee, J.; Kim, K. Y.; Lee, J.; Han, S. et al. N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ. Sci. 2013, 6, 3658-3664.

34

Tsai, K. A.; Hsu, Y. J. Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Appl. Catal. B: Environ. 2015, 164, 271-278.

35

Fan, W. Q.; Yu, X. Q.; Lu, H. C.; Bai, H. Y.; Zhang, C.; Shi, W. D. Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl. Catal. B: Environ. 2016, 181, 7-15.

36

Jia, L. P.; Sun, X.; Jiang, Y. M.; Yu, S. J.; Wang, C. M. A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1814-1820.

37

Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 2015, 137, 604-607.

38

Zhang, Z.; Choi, M.; Baek, M.; Yong, K. Novel heterostructure of CdSe nanobridge on ZnO nanorods: Cd-carboxyl-RGO-assisted synthesis and enhanced photoelectrochemical efficiency. Adv. Mater. Interfaces 2016, 3, 1500737.

39

Kim, H.; Seol, M.; Lee, J.; Yong, K. Highly efficient photoelectrochemical hydrogen generation using hierarchical ZnO/WOx nanowires cosensitized with CdSe/CdS. J. Phys. Chem. C 2011, 115, 25429-25436.

40

Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 1994, 98, 4109-4117.

41

Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 2010, 1, 2607-2612.

42

Bell, N. J.; Ng, Y. H.; Du, A. J.; Coster, H.; Smith, S. C.; Amal, R. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2- reduced graphene oxide composite. J. Phys. Chem. C 2011, 115, 6004-6009.

43

Park, S.; An, J.; Potts, J. R.; Velamakanni, A.; Murali, S.; Ruoff, R. S. Hydrazine-reduction of graphite- and graphene oxide. Carbon 2011, 49, 3019-3023.

44

Lin, J. D.; Hu, P.; Zhang, Y.; Fan, M. T.; He, Z. M.; Ngaw, C. K.; Loo, J. S. C.; Liao, D. W.; Tan, T. T. Y. Understanding the photoelectrochemical properties of a reduced graphene oxide-WO3 heterojunction photoanode for efficient solar- light-driven overall water splitting. RSC Adv. 2013, 3, 9330-9336.

45

Deacon, G. B.; Phillips, R. J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227-250.

46

Liu, C. S.; Shi, X. S.; Li, J. R.; Wang, J. J.; Bu, X. H. Cd(Ⅱ) coordination architectures with mixed ligands of 3-(2-pyridyl) pyrazole and pendant carboxylate ligands bearing different aromatic skeletons: Syntheses, crystal structures, and emission properties. Cryst. Growth Des. 2006, 6, 656-663.

47

Jaegermann, W.; Tributsch, H. Photoelectrochemical reactions of FeS2 (pyrite) with H2O and reducing agents. J. Appl. Electrochem. 1983, 13, 743-750.

48

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.

49

Sillen, A.; Engelborghs, Y. The correct use of "Average" fluorescence parameters. Photochem. Photobiol. 1998, 67, 475-486.

50
Sauer, M.; Hofkens, J.; Enderlein, J. Handbook of Fluorescence Spectroscopy and Imaging: From Single Molecules to Ensembles; Wiley-VCH: Weinheim, Germany, 2011.https://doi.org/10.1002/9783527633500
DOI
51

Le Formal, F.; Grätzel, M.; Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 2010, 20, 1099-1107.

52

Yu, Q.; Meng, X. G.; Wang, T.; Li, P.; Ye, J. H. Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv. Funct. Mater. 2015, 25, 2686-2692.

53

Jang, J. W.; Cho, S.; Magesh, G.; Jang, Y. J.; Kim, J. Y.; Kim, W. Y.; Seo, J. K.; Kim, S.; Lee, K. H.; Lee, J. S. Aqueous- solution route to zinc telluride films for application to CO2 reduction. Angew. Chem. 2014, 126, 5962-5967.

File
nr-10-7-2415_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 August 2016
Revised: 27 December 2016
Accepted: 29 December 2016
Published: 12 April 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This research was supported by the National Research Foundation of Korea (No. NRF-2016R1A4A1010735).

Return