Journal Home > Volume 10 , Issue 4

Van der Waals (vdW) heterojunctions based on two-dimensional (2D) atomic crystals have been extensively studied in recent years. Herein, we show that both vertical and lateral vdW heterojunctions can be realized with layered molecular crystals using a two-step physical vapor transport (PVT) process. Both types of heterojunctions show clean and sharp interfaces without phase mixing under atomic force microscopy (AFM). They also exhibit a strong interfacial built-in electric field similar to that of their inorganic counterparts. These heterojunctions have greater potential for device applications than individual materials. The lateral heterojunction (LHJ) devices show rectifying characteristics due to the asymmetric energy barrier for holes at the interface, while the vertical heterojunction (VHJ) devices behave like metal–insulator–semiconductor tunnel junctions, with pronounced negative differential conductance (NDC). Our work extends the concept of vdW heterojunctions to molecular materials, which can be generalized to other layered organic semiconductors (OSCs) to obtain new device functionalities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors

Show Author's information Yuhan Zhang1,§Zhongzhong Luo1,§Fengrui Hu2Haiyan Nan3Xiaoyong Wang2Zhenhua Ni3Jianbin Xu4,1Yi Shi1( )Xinran Wang1( )
National Laboratory of Solid State Microstructures School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures Nanjing UniversityNanjing210093China
School of Physics Nanjing UniversityNanjing210093China
Department of Physics Southeast UniversityNanjing211189China
Department of Electronic Engineering and Materials Science and Technology Research Center The Chinese University of Hong KongHong Kong SARChina

§These authors contributed equally to this work.

Abstract

Van der Waals (vdW) heterojunctions based on two-dimensional (2D) atomic crystals have been extensively studied in recent years. Herein, we show that both vertical and lateral vdW heterojunctions can be realized with layered molecular crystals using a two-step physical vapor transport (PVT) process. Both types of heterojunctions show clean and sharp interfaces without phase mixing under atomic force microscopy (AFM). They also exhibit a strong interfacial built-in electric field similar to that of their inorganic counterparts. These heterojunctions have greater potential for device applications than individual materials. The lateral heterojunction (LHJ) devices show rectifying characteristics due to the asymmetric energy barrier for holes at the interface, while the vertical heterojunction (VHJ) devices behave like metal–insulator–semiconductor tunnel junctions, with pronounced negative differential conductance (NDC). Our work extends the concept of vdW heterojunctions to molecular materials, which can be generalized to other layered organic semiconductors (OSCs) to obtain new device functionalities.

Keywords: two-dimensional, van der Waals epitaxy, organic semiconductor, heterojunctions

References(48)

1

Kroemer, H. A proposed class of hetero-junction injection lasers. Proc. IEEE 1963, 51, 1782−1783.

2

Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328.

3

Cho, A. Y.; Arthur, J. R. Prog. Molecular beam epitaxy. Prog. Solid State Chem. 1975, 10, 157–191.

4

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

5

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two- dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

6

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

7

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two- dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

8

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

9

Lou, Z.; Liang, Z. Z.; Shen, G. Z. Photodetectors based on two dimensional materials. J. Semicond. 2016, 37, 091001.

10

Geim, A. K.; Grigorieva, I. V. Van der waals heterostructures. Nature 2013, 499, 419–425.

11

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

12

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. -J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

13

Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

14

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light- emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

15

Chen, C. -C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666–672.

16

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

17

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

18

Chen, K.; Wan, X.; Xie, W. G.; Wen, J. X.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431–6437.

19

Chen, K.; Wan, X.; Wen, J. X.; Xie, W. G.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015, 9, 9868–9876.

20

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

21

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

22

Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 2013, 4, 1794.

23

Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdorfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

24

Xia, C. X.; Li, J. B. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond. 2016, 37, 051001.

25

Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.

26

Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.

27

Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 1997, 97, 1793–1896.

28

Heeger, A. J. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Adv. Mater. 2014, 26, 10–28.

29

Peumans, P.; Uchida, S.; Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular- weight organic thin films. Nature 2003, 425, 158–162.

30

Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006−7043.

31

Marathe, D. M.; Tarkas, H. S.; Mahajan, M. S.; Lonkar, G. S.; Tak, S. R.; Sali, J. V. Bulk heterojunction thin film formation by single and dual feed ultrasonic spray method for application in organic solar cells. J Semicond. 2016, 37, 093003.

32

He, D. W.; Zhang, Y. H.; Wu, Q. S.; Xu, R.; Nan, H. Y.; Liu, J. F.; Yao, J. J.; Wang, Z. L.; Yuan, S. J.; Li, Y. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 2014, 5, 5162.

33

He, D. W.; Pan, Y. M.; Nan, H. Y.; Gu, S.; Yang, Z. Y.; Wu, B.; Luo, X. G.; Xu, B. C.; Zhang, Y. H.; Li, Y. et al. A van der Waals p–n heterojunction with organic/inorganic semiconductors. Appl. Phys. Lett. 2015, 107, 183103.

34

Zhang, Y. H.; Qiao, J. S.; Gao, S.; Hu, F. R.; He, D. W.; Wu, B.; Yang, Z. Y.; Xu, B.; Li, Y.; Shi, Y. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett. 2016, 116, 016602.

35

Wu, B.; Zhao, Y. H.; Nan, H. Y.; Yang, Z. Y.; Zhang, Y. H.; Zhao, H. J.; He, D. W.; Jiang, Z. L.; Liu, X. L.; Li, Y. et al. Precise, self-limited epitaxy of ultrathin organic semiconductors and heterojunctions tailored by van der Waals interactions. Nano Lett. 2016, 16, 3754–3759.

36

Liu, X. L.; Luo, X. G.; Nan, H. Y.; Guo, H.; Wang, P.; Zhang, L. L.; Zhou, M. M.; Yang, Z. Y.; Shi, Y.; Hu, W. D. et al. Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors. Adv. Mater. 2016, 28, 5200–5205.

37

Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by "solution epitaxy". Angew. Chem., Int. Ed. 2016, 55, 9519– 9523.

38

Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191–3198.

39

Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059–2063.

40

Mannsfeld, S. C. B.; Virkar, A.; Reese, C.; Toney, M. F.; Bao, Z. Precise structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv. Mater. 2009, 21, 2294–2298.

41

Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

42

Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 2015, 349, 524–528.

43

Kobayashi, H.; Kobayashi, N.; Hosoi, S.; Koshitani, N.; Murakami, D.; Shirasawa, R.; Kudo, Y.; Hobara, D.; Tokita, Y.; Itabashi, M. Hopping and band mobilities of pentacene, rubrene, and 2, 7-dioctyl[1]benzothieno[3, 2-b][1] benzothiophene (C8-btbt) from first principle calculations. J. Chem. Phys. 2013, 139, 014707.

44

Jang, S.; Hwang, E.; Lee, Y.; Lee, S.; Cho, J. H. Multifunc­tional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 2015, 15, 2542–2547.

45

Kane, E. O. Theory of tunneling. J. Appl. Phys. 1961, 32, 83–91.

46

Yan, R. S.; Fathipour, S.; Han, Y. M.; Song, B.; Xiao, S. D.; Li, M. D.; Ma, N.; Protasenko, V.; Muller, D. A.; Jena, D. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 2015, 15, 5791–5798.

47

Esaki, L. New phenomenon in narrow germanium p−n junctions. Phys. Rev. 1958, 109, 603–604.

48

Esaki, L. Long journey into tunneling. Rev. Mod. Phys. 1974, 46, 237–244.

File
nr-10-4-1336_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 November 2016
Revised: 20 December 2016
Accepted: 28 December 2016
Published: 21 February 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported in part by National Basic Research Program of China (Nos. 2013CBA01604 and 2015CB921600), National Natural Science Foundation of China (Nos. 61325020, 61261160499, 11274154, and 61521001), Research Grant Council of Hong Kong (No. SARN_CUHK405/12), Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, "Jiangsu Shuangchuang" program and "Jiangsu Shuangchuang Team" Program.

Return