Journal Home > Volume 10 , Issue 5

Rational design and controlled fabrication of efficient and cost-effective electrodes for the oxygen evolution reaction (OER) are critical for addressing the unprecedented energy crisis. Nickel–iron layered double hydroxides (NiFe-LDHs) with specific interlayer anions (i.e. phosphate, phosphite, and hypophosphite) were fabricated by a co-precipitation method and investigated as oxygen evolution electrocatalysts. Intercalation of the phosphorus oxoanion enhanced the OER activity in an alkaline solution; the optimal performance (i.e., a low onset potential of 215 mV, a small Tafel slope of 37.7 mV/dec, and stable electrochemical behavior) was achieved with the hypophosphite-intercalated NiFe-LDH catalyst, demonstrating dramatic enhancement over the traditional carbonate-intercalated NiFe-LDH in terms of activity and durability. This enhanced performance is attributed to the interaction between the intercalated phosphorous oxoanions and the edge-sharing MO6 (M = Ni, Fe) layers, which modifies the surface electronic structure of the Ni sites. This concept should be inspiring for the design of more effective LDH-based oxygen evolution electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution

Show Author's information Ma Luo1,§Zhao Cai1,2,§Cheng Wang3Yongmin Bi1Li Qian1Yongchao Hao1Li Li1Yun Kuang1Yaping Li1Xiaodong Lei1Ziyang Huo4Wen Liu2( )Hailiang Wang2Xiaoming Sun1( )Xue Duan1
State Key Laboratory of Chemical Resource Engineering, College of Energy Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical TechnologyBeijing 100029 China
Department of Chemistry and Energy Sciences Institute Yale University810 West Campus DriveWest Haven, CT 06516 USA
Chinese Research Academy of Environmental Sciences Beijing 100012 China
Queensland Micro- and Nanotechnology Centre Griffith UniversityBrisbane QLD4109 Australia

§ These authors contributed equally to this work.

Abstract

Rational design and controlled fabrication of efficient and cost-effective electrodes for the oxygen evolution reaction (OER) are critical for addressing the unprecedented energy crisis. Nickel–iron layered double hydroxides (NiFe-LDHs) with specific interlayer anions (i.e. phosphate, phosphite, and hypophosphite) were fabricated by a co-precipitation method and investigated as oxygen evolution electrocatalysts. Intercalation of the phosphorus oxoanion enhanced the OER activity in an alkaline solution; the optimal performance (i.e., a low onset potential of 215 mV, a small Tafel slope of 37.7 mV/dec, and stable electrochemical behavior) was achieved with the hypophosphite-intercalated NiFe-LDH catalyst, demonstrating dramatic enhancement over the traditional carbonate-intercalated NiFe-LDH in terms of activity and durability. This enhanced performance is attributed to the interaction between the intercalated phosphorous oxoanions and the edge-sharing MO6 (M = Ni, Fe) layers, which modifies the surface electronic structure of the Ni sites. This concept should be inspiring for the design of more effective LDH-based oxygen evolution electrocatalysts.

Keywords: phosphate, oxygen evolution reaction, layered double hydroxide, phosphite, hypophosphite

References(46)

1

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

2

Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

3

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

4

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

5

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 127, 7507–7512.

6

Görlin, M.; Chernev, P.; de Araújo, J. F.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

7

Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.

8

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

9

Chen, R.; Wang, H. Y.; Miao, J. W.; Yang, H. B.; Liu, B. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core–shell nanowires. Nano Energy 2015, 11, 333–340.

10

Wang, H. Y.; Hung, S. F.; Chen, H, Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical- site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

11

Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

12

Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem., Int. Ed. 2014, 126, 14240–14245.

13

Nong, H. N.; Oh, H. S.; Reier, T.; Willinger, E.; Willinger, M. G.; Petkov, V.; Teschner, D.; Strasser, P. Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2015, 54, 2975–2979.

14

Sels, B.; Vos, D. D.; Buntinx, M.; Pierard, F.; Kirsch-De Mesmaeker, A.; Jacobs, P. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination. Nature 1999, 400, 855–857.

15

Sideris, P. J.; Nielsen, U. G.; Gan, Z. H.; Grey, C. P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 2008, 321, 113–117.

16

Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.

17

Williams, G. R.; O'Hare, D. Towards understanding, control and application of layered double hydroxide chemistry. J. Mater. Chem. 2006, 16, 3065–3074.

18

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. Z.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

19

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 126, 7714–7718.

20

Chen, R.; Sun, G. Z.; Yang, C. J.; Zhang, L. P.; Miao, J. W.; Tao, H. B.; Yang, H. B.; Chen, J. Z.; Chen, P.; Liu, B. Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horiz. 2016, 1, 156–160.

21

Song, F.; Hu, X. L. Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.

22

Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.

23

Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.

24

Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

25

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

26

He, S.; An, Z.; Wei, M.; Evans, D. G.; Duan, X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chem. Commun. 2013, 49, 5912–5920.

27

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

28

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

29

Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.

30

Dionigi, F.; Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.

31

Cai, Z.; Kuang, Y.; Qi, X. H.; Wang, P.; Zhang, Y.; Zhang, Z. C.; Sun, X. M. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 1182–1187.

32

Teramura, K.; Iguchi, S.; Mizuno, Y.; Shishido, T.; Tanaka, T. Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew. Chem., Int. Ed. 2012, 124, 8132–8135.

33

Cai, Z.; Lu, Z. Y.; Bi, Y. M.; Li, Y. P.; Kuang, Y.; Sun, X. M. Superior anti-CO poisoning capability: Au-decorated PtFe nanocatalysts for high-performance methanol oxidation. Chem. Commun. 2016, 52, 3903–3906.

34

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt- phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

35

Kanan, M. W.; Yano, J.; Surendranath, Y.; Dincă, M.; Yachandra V. K.; Nocera, D. G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 2010, 132, 13692–13701.

36

Nagaosa, Y.; Aoyama, E. Catalytic oxidation of phosphite and hypophosphite to phosphate on Pd/activated carbon powder. Carbon 2001, 39, 2087–2088.

37

Zeng, Y.; Zhou, S. M. In situ UV–Vis spectroscopic study of the electrocatalytic oxidation of hypophosphite on a nickel electrode. Electrochem. Commun. 1999, 1, 217–222.

38

Akbayeva, D. N.; Di Vaira, M.; Costantini, S. S.; Peruzzini, M.; Stoppioni, P. Stabilization of the tautomers HP(OH)2 and P(OH)3 of hypophosphorous and phosphorous acids as ligands. Dalton Trans. 2006, 389–395.

39

Hunter, B. M.; Blakemore, J. D.; Deimund, M.; Gray, H. B.; Winkler, R. J.; Müller, A. M. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 2014, 136, 13118– 13121.

40

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

41

Parida, K. M.; Mohapatra, L. Carbonate intercalated Zn/Fe layered double hydroxide: A novel photocatalyst for the enhanced photo degradation of azo dyes. Chem. Eng. J. 2012, 179, 131–139.

42

Tsuboi, M. Vibrational spectra of phosphite and hypophosphite anions, and the characteristic frequencies of PO3 and PO2 groups. J. Am. Chem. Soc. 1957, 79, 1351–1354.

43

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

44

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2014, 6, 6616.

45

Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.

46

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

File
nr-10-5-1732_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2016
Revised: 23 December 2016
Accepted: 26 December 2016
Published: 22 February 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the National Key Research and Development Program of China (Nos. 2016YFC0801302 and 2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University, the Fundamental Research Funds for the Central Universities, and the longterm subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC.

Return