Journal Home > Volume 10 , Issue 5

Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical, electrical, and thermophysical applications. Additionally, the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties. In this highlight article, we review our recent progress and understanding in the deliberate induction of imperfections, in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities. The role of catalysts and catalyst–nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored. Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation. "Epitaxial defect transfer" process and catalyst–nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis. By inducing and manipulating twin boundaries in the metal catalysts, twin formation and density are controlled in Ge nanowires. The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries. Additionally, metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires. Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth, where the impurity Sn atoms become trapped with the deposition of successive layers, thus giving an extraordinary Sn content (> 6 at.%) in Ge nanowires. A larger amount of Sn impingement (> 9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.


menu
Abstract
Full text
Outline
About this article

Inducing imperfections in germanium nanowires

Show Author's information Subhajit Biswas1,2( )Sven Barth3Justin D. Holmes1,2( )
Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National Institute University College CorkCork Ireland
AMBER@CRANN Trinity College DublinDublin 2 Ireland
Vienna University of Technology, Institute of Materials Chemistry Getreidemarkt 9/BC/02 1060 Vienna Austria

Abstract

Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical, electrical, and thermophysical applications. Additionally, the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties. In this highlight article, we review our recent progress and understanding in the deliberate induction of imperfections, in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities. The role of catalysts and catalyst–nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored. Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation. "Epitaxial defect transfer" process and catalyst–nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis. By inducing and manipulating twin boundaries in the metal catalysts, twin formation and density are controlled in Ge nanowires. The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries. Additionally, metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires. Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth, where the impurity Sn atoms become trapped with the deposition of successive layers, thus giving an extraordinary Sn content (> 6 at.%) in Ge nanowires. A larger amount of Sn impingement (> 9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.

Keywords: nanowire, vapor–liquid–solid (VLS) growth, germanium, twinning, impurity incorporation

References(69)

1

Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.

2

Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

3

Léonard, F.; Talin, A. A.; Swartzentruber, B. S.; Picraux, S. T. Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire schottky diodes. Phys. Rev. Lett. 2009, 102, 106805.

4

Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field- effect transistors. Nature 2006, 441, 489–493.

5

Heath, J. R.; LeGoues, F. K. A liquid solution synthesis of single crystal germanium quantum wires. Chem. Phys. Lett. 1993, 208, 263–268.

6

Tuan, H. Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A. Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals. Chem. Mater. 2005, 17, 5705–5711.

7

Petkov, N.; Birjukovs, P.; Phelan, R.; Morris, M. A.; Erts, D.; Holmes, J. D. Growth of ordered arrangements of one- dimensional germanium nanostructures with controllable crystallinities. Chem. Mater. 2008, 20, 1902–1908.

8

Lu, X. M.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A. High yield solution–liquid–solid synthesis of germanium nanowires. J. Am. Chem. Soc. 2005, 127, 15718–15719.

9

Andzane, J.; Petkov, N.; Livshits, A. I.; Boland, J. J.; Holmes, J. D.; Erts, D. Two-terminal nanoelectromechanical devices based on germanium nanowires. Nano Lett. 2009, 9, 1824–1829.

10

Ziegler, K. J.; Lyons, D. M.; Holmes, J. D.; Erts, D.; Polyakov, B.; Olin, H.; Svensson, K.; Olsson, E. Bistable nanoelectromechanical devices. Appl. Phys. Lett. 2004, 84, 4074–4076.

11

Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4658–4664.

12

Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.

13

Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

14

Burchhart, T.; Lugstein, A.; Hyun, Y. J.; Hochleitner, G.; Bertagnolli, E. Atomic scale alignment of copper-germanide contacts for Ge nanowire metal oxide field effect transistors. Nano Lett. 2009, 9, 3739–3742.

15
Garfunkel, E.; Mastrogiovanni, D.; Klein, L.; Wan, A. L.; Du Pasquier, A. Germanium nanowires poly(3-hexylthiophene) composites for photovoltaic applications. In American Chemical Society Division of Polymeric Materials: Science and Engineering, Philadelphia, Pennsylvania, USA, 2008, pp 50–51.
16

Nguyen, P.; Ng, H. T.; Meyyappan, M. Growth of individual vertical germanium nanowires. Adv. Mater. 2005, 17, 549–553.

17

Cullis, A. G.; Canham, L. T.; Calcott, P. D. J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997, 82, 909–965.

18

Wood, E. L.; Sansoz, F. Growth and properties of coherent twinning superlattice nanowires. Nanoscale 2012, 4, 5268– 5276.

19

Tsuzuki, H.; Cesar, D. F.; de Sousa Dias, M. R.; Castelano, L. K.; Lopez-Richard, V.; Rino, J. P.; Marques, G. E. Tailoring electronic transparency of twin-plane 1D superlattices. ACS Nano 2011, 5, 5519–5525.

20

Sansoz, F. Surface faceting dependence of thermal transport in silicon nanowires. Nano Lett. 2011, 11, 5378–5382.

21

Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L.-F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, Elias.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.

22

Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin- plane superlattices in Ⅲ-Ⅴ nanowires. Nat. Nanotechnol. 2009, 4, 50–55.

23

Ikonić, Z.; Srivastava, G. P.; Inkson, J. C. Electronic structure of twinning superlattices. Surf. Sci. 1994, 307-309, 880–884.

24

Ikonic, Z.; Srivastava, G. P.; Inkson, J. C. Optical properties of twinning superlattices in diamond-type and zinc-blende- type semiconductors. Phys. Rev. B 1995, 52, 14078–14085.

25

Xiong, S. Y.; Kosevich, Y. A.; Sääskilahti, K.; Ni, Y. X.; Volz, S. Tunable thermal conductivity in silicon twinning superlattice nanowires. Phys. Rev. B 2014, 90, 195439.

26

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

27

Yin, W.-J.; Gong, X.-G.; Wei, S.-H. Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1−x alloys. Phys. Rev. B 2008, 78, 161203.

28

Chen, R.; Lin, H.; Huo, Y. J.; Hitzman, C.; Kamins, T. I.; Harris, J. S. Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 99, 181125.

29

Gupta, S.; Magyari-Kope, B.; Nishi, Y.; Saraswat, K. C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys. 2013, 113, 073707.

30

Moontragoon, P.; Soref, R.; Ikonic, Z. The direct and indirect bandgaps of unstrained SixGe1−xySny and their photonic device applications. J. Appl. Phys. 2012, 112, 073106.

31

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

32

Biswas, S.; Singha, A.; Morris, M. A.; Holmes, J. D. Inherent control of growth, morphology, and defect formation in germanium nanowires. Nano Lett. 2012, 12, 5654–5663.

33

Biswas, S.; Doherty, J.; Majumdar, D, ; Ghoshal, T.; Rahme, K.; Conroy, M.; Singha, A.; Morris, M. A.; Holmes, J. D. Diameter-controlled germanium nanowires with lamellar twinning and polytypes. Chem. Mater. 2015, 27, 3408–3416.

34

Biswas, S.; Doherty, D.; Saladukha, D.; Ramasse, Q.; Majumdar, D.; Upmanyu, M.; Singha, A.; Ochalski, T.; Morris, M. A.; Holmes, J. D. Non-equilibrium induction of tin in germanium: Towards direct bandgap Ge1−xSnx nanowires. Nat. Commun. 2016, 7, 11405.

35

Davidson, F. M., III; Lee, D. C.; Fanfair, D. D.; Korgel, B. A. Lamellar twinning in semiconductor nanowires. J. Phys. Chem. C 2007, 111, 2929–2935.

36

Johansson, J.; Karlsson, L. S.; Svensson, C. P. T.; Mårtensson, T.; Wacaser, B. A.; Deppert, K.; Samuelson, L.; Seifert, W. Structural properties of (111)B-oriented Ⅲ-Ⅴ nanowires. Nat. Mater. 2006, 5, 574–580.

37

Su, Z. X.; Dickinson, C.; Wan, Y T.; Wang, Z. L.; Wang, Y. W.; Sha, J.; Zhou, W Z. Crystal growth of Si nanowires and formation of longitudinal planar defects. CrystEngComm 2010, 12, 2793–2798.

38

Liu, X. H.; Wang, D. W. Kinetically-induced hexagonality in chemically grown silicon nanowires. Nano Res. 2009, 2, 575–582.

39

Conesa-Boj, S. N.; Zardo, I.; Estradé, S.; Wei, L.; Alert, P. J.; Roca i Cabarrocas, P.; Morante, J. R.; Peiró, F.; Fontcuberta i Morral, A.; Arbiol, J. Defect formation in Ga-catalyzed silicon nanowires. Cryst. Growth Des. 2010, 10, 1534–1543.

40

Cayron, C.; Den Hertog, M.; Latu-Romain, L.; Mouchet, C.; Secouard, C.; Rouviere, J.-L.; Rouviere, E.; Simonato, J.-P. Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins. J. Appl. Cryst. 2009, 42, 242–252.

41

Dayeh, S. A.; Wang, J.; Li, N.; Huang, J. Y.; Gin, A. V.; Picraux, S. T. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 2011, 11, 4200–4206.

42

Shin, N.; Chi, M. F.; Filler, M. A. Interplay between defect propagation and surface hydrogen in silicon nanowire kinking superstructures. ACS Nano 2014, 8, 3829–3835.

43

Morin, S. A.; Jin, S. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Lett. 2010, 10, 3459–3463.

44

Barth, S.; Boland, J. J.; Holmes, J. D. Defect transfer from nanoparticles to nanowires. Nano Lett. 2011, 11, 1550–1555.

45

Major, S. S., Jr.; Grosskre, J. C. Thermal behavior of stacking faults in silver films. Jpn. J. Appl. Phys. 1968, 7, 574–576.

46

Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.

47

Qi, W. H.; Lee, S. T. Phase stability, melting, and alloy formation of Au–Ag bimetallic nanoparticles. J. Phys. Chem. C 2010, 114, 9580–9587.

48

Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289–296.

49

Hurle, D. T. J.; Rudolph, P. A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J. Cryst. Growth 2004, 264, 550–564.

50

Hurle, D. T. J. A mechanism for twin formation during czochralski and encapsulated vertical bridgman growth of Ⅲ–Ⅴ compound semiconductors. J. Cryst. Growth 1995, 147, 239–250.

51

Arbiol, J.; Fontcuberta i Morral, A.; Estradé, S.; Peiró, F.; Kalache, B.; Roca i Cabarrocas, P.; Morante, J. R. Influence of the (111) twinning on the formation of diamond cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. J. Appl. Phys. 2008, 104, 064312.

52

Wang, Y. W.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.

53

Chou, Y.-C.; Wen, C.-Y.; Reuter, M. C.; Su, D.; Stach, E. A.; Ross, F. M. Controlling the growth of Si/Ge nanowires and heterojunctions using silver–gold alloy catalysts. ACS Nano 2012, 6, 6407–6415.

54

Shin, N.; Chi, M. F.; Howe, J. Y.; Filler, M. A. Rational defect introduction in silicon nanowires. Nano Lett. 2013, 13, 1928–1933.

55

Shin, N.; Chi, M. F.; Filler, M. A. Sidewall morphology- dependent formation of multiple twins in Si nanowires. ACS Nano 2013, 7, 8206–8213.

56

Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95, 146104.

57

Jeon, N.; Dayeh, S. A.; Lauhon, L. J. Origin of polytype formation in VLS-grown Ge nanowires through defect generation and nanowire kinking. Nano Lett. 2013, 13, 3947–3952.

58

Vincent, L.; Patriarche, G.; Hallais, G.; Renard, C.; Gardès, C.; Troadec, D.; Bouchier, D. Novel heterostructured Ge nanowires based on polytype transformation. Nano Lett. 2014, 14, 4828–4836.

59

Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J.-C.; Zwiller, V. Crystal phase quantum dots. Nano Lett. 2010, 10, 1198– 1201.

60

Dillen, D. C.; Varahramyan, K. M.; Corbet, C. M.; Tutuc, E. Raman spectroscopy and strain mapping in individual Ge-SixGe1–x core-shell nanowires. Phys. Rev. B 2012, 86, 045311.

61

López-Cruz, E.; Cardona, M. Raman spectra of two new modifications of germanium: Allo-germanium and 4H-Ge. Solid State Commun. 1983, 45, 787–789.

62

Chen, W. H.; Yu, L. W.; Misra, S.; Fan, Z.; Pareige, P.; Patriarche, G.; Bouchoule, S.; Roca i Cabarrocas, P. Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth. Nat. Commun. 2014, 5, 4134.

63

Moutanabbir, O.; Isheim, D.; Blumtritt, H.; Senz, S.; Pippel, E.; Seidman, D. N. Colossal injection of catalyst atoms into silicon nanowires. Nature 2013, 496, 78–82.

64

Biswas, S.; O'Regan, C.; Petkov, N.; Morris, M. A.; Holmes, J. D. Manipulating the growth kinetics of vapor–liquid–solid propagated Ge nanowires. Nano Lett. 2013, 13, 4044–4052.

65

Biswas, S.; O'Regan, C.; Morris, M. A.; Holmes, J. D. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys. Small 2015, 11, 103–111.

66

Wang, H. L.; Zepeda-Ruiz, L. A.; Gilmer, G. H.; Upmanyu, M. Atomistics of vapour-liquid-solid nanowire growth. Nat. Commun. 2013, 4, 1956.

67

Ciulik, J.; Notis, M. R. The Au-Sn phase-diagram. J. Alloys Compd. 1993, 191, 71–78.

68

Nakamura, J.; Natori, A. Dielectric discontinuity at structural boundaries in Si. Appl. Phys. Lett. 2006, 89, 053118.

69

Ouyang, G.; Wang, C. X.; Yang, G. W. Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 2009, 109, 4221–4247.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2016
Revised: 19 December 2016
Accepted: 20 December 2016
Published: 02 March 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We acknowledge financial support from Science Foundation Ireland (No. 14-IA-2513) and SFI Inter­national Strategic Co-operation Award (ISCA) India- Ireland program.

Return