Journal Home > Volume 10 , Issue 7

Atomic-scale oxidation dynamics of Cu2O nanocrystallines (NCs) are directly observed by in situ high-resolution transmission electron microscopy. A two-stage oxidation process is observed: (1) The initial oxidation stage is dominated by the dislocation-mediated oxidation behavior of Cu2O NCs via solid-solid transformations, leading to the formation of a new intermediate CuOx phase. The possible crystal structure of the CuOx phase is discussed. (2) Subsequently, CuOx is transformed into CuO by layer-by-layer oxidation. These results will help in understanding the oxidation mechanisms of copper oxides and pave the way for improving their structural diversity and exploiting their potential industrial applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomic-scale observation of a two-stage oxidation process in Cu2O

Show Author's information Huihui Liu1,§He Zheng1,§Lei Li1,§Huaping Sheng1Shuangfeng Jia1( )Fan Cao1Xi Liu1,2Boyun Chen1,3Ru Xing4Dongshan Zhao1Jianbo Wang1,5( )
School of Physics and Technology Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures and Institute for Advanced Studies Wuhan University Wuhan 430072 China
Middle School Attached to Huazhong University of Science and Technology Wuhan 430074 China
Shuiguohu Senior Middle School Wuhan 430071 China
The Department of Physics Science and Technology Baotou Normal College Baotou 014030 China
Science and Technology on High Strength Structural Materials Laboratory Central South University Changsha 410083 China

§ These authors contributed equally to this work.

Abstract

Atomic-scale oxidation dynamics of Cu2O nanocrystallines (NCs) are directly observed by in situ high-resolution transmission electron microscopy. A two-stage oxidation process is observed: (1) The initial oxidation stage is dominated by the dislocation-mediated oxidation behavior of Cu2O NCs via solid-solid transformations, leading to the formation of a new intermediate CuOx phase. The possible crystal structure of the CuOx phase is discussed. (2) Subsequently, CuOx is transformed into CuO by layer-by-layer oxidation. These results will help in understanding the oxidation mechanisms of copper oxides and pave the way for improving their structural diversity and exploiting their potential industrial applications.

Keywords: oxidation, Cu2O, in situ electron microscopy, intermediated phases

References(31)

1

Luo, J. S.; Steier, L.; Son, M. K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 2016, 16, 1848-1857.

2

Sheng, H. P.; Zheng, H.; Cao, F.; Wu, S. J.; Li, L.; Liu, C.; Zhao, D. S.; Wang, J. B. Anelasticity of twinned CuO nanowires. Nano Res. 2015, 8, 3687-3693.

3

Zhang, Q. B.; Zhang, K. L.; Xu, D. G.; Yang, G. C.; Huang, H.; Nie, F. D.; Liu, C. M.; Yang, S. H. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208-337.

4

Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 2009, 21, 803-807.

5

Wang, L. L.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity. Nanoscale 2012, 4, 6850-6855.

6

Florica, C.; Costas, A.; Boni, A. G.; Negrea, R.; Ion, L.; Preda, N.; Pintilie, L.; Enculescu, I. Electrical properties of single CuO nanowires for device fabrication: Diodes and field effect transistors. Appl. Phys. Lett. 2015, 106, 223501.

7

Jang, H. S.; Kim, S. J.; Choi, K. S. Construction of cuprous oxide electrodes composed of 2D single-crystalline dendritic nanosheets. Small 2010, 6, 2183-2190.

8

Wang, C.; Wang, Y. Q.; Liu, X. H.; Diao, F. Y.; Yuan, L.; Zhou, G. W. Novel hybrid nanocomposites of polyhedral Cu2O nanoparticles-CuO nanowires with enhanced photoactivity. Phys. Chem. Chem. Phys. 2014, 16, 17487-17492.

9

Yuan, L.; Yin, Q. Y.; Wang, Y. Q.; Zhou, G. W. CuO reduction induced formation of CuO/Cu2O hybrid oxides. Chem. Phys. Lett. 2013, 590, 92-96.

10

Na, Y.; Lee, S. W.; Roy, N.; Pradhan, D.; Sohn, Y. Room temperature light-induced recrystallization of Cu2O cubes to CuO nanostructures in water. CrystEngComm 2014, 16, 8546-8554.

11

Yuan, L.; Wang, Y. Q.; Mema, R.; Zhou, G. W. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 2011, 59, 2491-2500.

12

Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811-820.

DOI
13

Zhu, H. L.; Zhang, J. Y.; Li, C. Z.; Pan, F.; Wang, T. M.; Huang, B. B. Cu2O thin films deposited by reactive direct current magnetron sputtering. Thin Solid Films 2009, 517, 5700-5704.

14

Yuan, W. T.; Yu, J.; Li, H. B.; Zhang, Z.; Sun, C. H.; Wang, Y. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen. Nano Res. 2017, 10, 397-404.

15

Li, C.; Yao, Y.; Shen, X.; Wang, Y. G.; Li, J. J.; Gu, C. Z.; Yu, R. C.; Liu, Q.; Liu, M. Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 2015, 8, 3571-3579.

16

Tian, X. Z.; Wang, L. F.; Wei, J. K.; Yang, S. Z.; Wang, W. L.; Xu, Z.; Bai, X. D. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 2014, 7, 1065-1072.

17

Lenrick, F.; Ek, M.; Deppert, K.; Samuelson, L.; Reine Wallenberg, L. Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. Nano Res. 2014, 7, 1188-1194.

18

Huang, C. W.; Chen, J. Y.; Chiu, C. H.; Hsin, C. L.; Tseng, T. Y.; Wu, W. W. Observing the evolution of graphene layers at high current density. Nano Res. 2016, 9, 3663-3670.

19

Sheng, H. P.; Zheng, H.; Jia, S. F.; Li, L.; Cao, F.; Wu, S. J.; Han, W.; Liu, H. H.; Zhao, D. S.; Wang, J. B. Twin structures in CuO nanowires. J. Appl. Cryst. 2016, 49, 462-467.

20

Zheng, H.; Wu, S. J.; Sheng, H. P.; Liu, C.; Liu, Y.; Cao, F.; Zhou, Z. C.; Zhao, X. Z.; Zhao, D. S.; Wang, J. B. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 2014, 104, 141906.

21

Filipič, G.; Cvelbar, U. Copper oxide nanowires: A review of growth. Nanotechnology 2012, 23, 194001.

22

Ta, H. Q.; Bachmatiuk, A.; Warner, J. H.; Zhao, L.; Sun, Y. H.; Zhao, J.; Gemming, T.; Trzebicka, B.; Liu, Z. F.; Pribat, D. et al. Electron-driven metal oxide effusion and graphene gasification at room temperature. ACS Nano 2016, 10, 6323-6330.

23

Wang, J. B.; Li, L. Y.; Xiong, D. X.; Wang, R. H.; Zhao, D. S.; Min, C. P.; Yu, Y.; Ma, L. L. High spatially resolved morphological, structural and spectroscopical studies on copper oxide nanocrystals. Nanotechnology 2007, 18, 075705.

24

Takagaki, Y.; Herrmann, C.; Jenichen, B.; Brandt, O. Epitaxial orientation of MnAs layers grown on GaAs surfaces by means of solid-state crystallization. Phys. Rev. B 2008, 78, 064115.

25

Lu, L.; Wang, J. B.; Zheng, H.; Zhao, D. S.; Wang, R. H.; Gui, J. N. Spontaneous formation of filamentary Cd whiskers and degradation of CdMgYb icosahedral quasicrystal under ambient conditions. J. Mater. Res. 2012, 27, 1895-1904.

26

Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Topological defect dynamics in operando battery nanoparticles. Science 2015, 348, 1344-1347.

27

Cahn, J. W. Nucleation on dislocations. Acta Metall. 1957, 5, 169-172.

28

Rodriguez, J. A.; Kim, J. Y.; Hanson, J. C.; Pérez, M.; Frenkel, A. I. Reduction of CuO in H2: In situ time-resolved XRD studies. Catal. Lett. 2003, 85, 247-254.

29

Zhou, G. W.; Luo, L. L.; Li, L.; Ciston, J.; Stach, E. A.; Yang, J. C. Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 2012, 109, 235502.

30

Yin, K. B.; Zhang, Y. Y.; Zhou, Y. L.; Sun, L. T.; Chisholm, M. F.; Pantelides, S. T.; Zhou, W. Unsupported single- atom-thick copper oxide monolayers. 2D Mater. 2017, 4, 011001.

31

Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. In situ study of noncatalytic metal oxide nanowire growth. Nano Lett. 2014, 14, 5810-5813

Video
nr-10-7-2344_ESM.mov
File
nr-10-7-2344_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 August 2016
Revised: 18 December 2016
Accepted: 19 December 2016
Published: 02 March 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2011CB933300), the National Natural Science Foundation of China (Nos. 51671148, 51271134, J1210061, 11674251, 51501132, and 51601132), the Hubei Provincial Natural Science Foundation of China (Nos. 2016CFB446 and 2016CFB155), the Fundamental Research Funds for the Central Universities, and the CERS-1-26 (CERS-China Equipment and Education Resources System), and the China Postdoctoral Science Foundation (No. 2014T70734), and the Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory (Central South University) and the Suzhou Science and Technology project (No. SYG201619).

Return