Journal Home > Volume 10 , Issue 4

Nanoparticles and proteins are similar in a number of aspects, and using nanoparticles to mimic the catalytic function of enzymes is an interesting yet challenging task. Impressive developments have been made over the past two decades on this front. The term nanozyme was coined to refer to nanoparticlebased enzyme mimics. To date, many different types of nanozymes have been reported to catalyze a broad range of reactions for chemical, analytical, and biomedical applications. Since chemical reactions happen mainly on the surface of nanozymes, an interesting aspect for investigation is surface modification. In this review, we summarize three types of nanozyme materials catalyzing various reactions with a focus on their surface chemistry. For metal oxides, cerium oxide and iron oxide are discussed as they are the most extensively studied. Then, gold nanoparticles and graphene oxide are reviewed to represent metallic and carbon nanomaterials, respectively. Types of modifications include ions, small molecules, and polymers mainly by physisorption, while in a few cases, covalent modifications were also employed. The functional aspect of such modification is to improve catalytic activity, substrate specificity, and stability. Future perspectives of this field are speculated at the end of this review.


menu
Abstract
Full text
Outline
About this article

Surface modification of nanozymes

Show Author's information Biwu LiuJuewen Liu( )
Department of ChemistryWaterloo Institute for NanotechnologyUniversity of Waterloo, Waterloo, Ontario, N2L 3G1Canada

Abstract

Nanoparticles and proteins are similar in a number of aspects, and using nanoparticles to mimic the catalytic function of enzymes is an interesting yet challenging task. Impressive developments have been made over the past two decades on this front. The term nanozyme was coined to refer to nanoparticlebased enzyme mimics. To date, many different types of nanozymes have been reported to catalyze a broad range of reactions for chemical, analytical, and biomedical applications. Since chemical reactions happen mainly on the surface of nanozymes, an interesting aspect for investigation is surface modification. In this review, we summarize three types of nanozyme materials catalyzing various reactions with a focus on their surface chemistry. For metal oxides, cerium oxide and iron oxide are discussed as they are the most extensively studied. Then, gold nanoparticles and graphene oxide are reviewed to represent metallic and carbon nanomaterials, respectively. Types of modifications include ions, small molecules, and polymers mainly by physisorption, while in a few cases, covalent modifications were also employed. The functional aspect of such modification is to improve catalytic activity, substrate specificity, and stability. Future perspectives of this field are speculated at the end of this review.

Keywords: adsorption, nanozymes, biosensors, enzyme-mimics, peroxidases

References(151)

1

Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

2

Xu, C.; Qu, X. G. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90.

3

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

4

Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.

5

Lin, Y. H.; Ren, J. S.; Qu, X. G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200–4217.

6

Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

7

Manea, F.; Houillon, F. B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004, 43, 6165–6169.

8

Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of "naked" gold particles. Angew. Chem., Int. Ed. 2004, 43, 5812–5815.

9

Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraki, T.; Sugiura, Y. Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc. 1993, 115, 7918–7919.

10

Dugan, L. L.; Turetsky, D. M.; Du, C.; Lobner, D.; Wheeler, M.; Almli, C. R.; Shen, C. K. -F.; Luh, T. -Y.; Choi, D. W.; Lin, T. -S. Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA 1997, 94, 9434–9439.

11

Cheng, H. J.; Zhang, L.; He, J.; Guo, W. J.; Zhou, Z. Y.; Zhang, X. J.; Nie, S. M.; Wei, H. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal. Chem. 2016, 88, 5489–5497.

12

Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.

13

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

14

Yu, F. Q.; Huang, Y. Z.; Cole, A. J.; Yang, V. C. The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 2009, 30, 4716–4722.

15

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

16

Dong, Y. -L.; Zhang, H. -G.; Rahman, Z. U.; Su, L.; Chen, X. -J.; Hu, J.; Chen, X. -G. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976.

17

Liu, B. W.; Sun, Z. Y.; Huang, P. -J. J.; Liu, J. W. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295.

18

Tarnuzzer, R. W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from radiation- induced cellular damage. Nano Lett. 2005, 5, 2573–2577.

19

Kuah, E.; Toh, S.; Yee, J.; Ma, Q.; Gao, Z. Q. Enzyme mimics: Advances and applications. Chem. —Eur. J. 2016, 22, 8404–8430.

20

Gao, L. Z.; Yan, X. Y. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China: Life Sci. 2016, 59, 400–402.

21

Ragg, R.; Tahir, M. N.; Tremel, W. Solids go bio: Inorganic nanoparticles as enzyme mimics. Eur. J. Inorg. Chem. 2016, 2016, 1906–1915.

22

Mancin, F.; Prins, L. J.; Pengo, P.; Pasquato, L.; Tecilla, P.; Scrimin, P. Hydrolytic metallo-nanozymes: From micelles and vesicles to gold nanoparticles. Molecules 2016, 21, 1014.

23

Wang, X.; Guo, W.; Hu, Y.; Wu, J.; Wei, H. Nanozymes: Next Wave of Artificial Enzymes; Springer: Berlin Heidelberg, 2016.

24

Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F detection. Nanoscale 2016, 8, 13562–13567.

25

Xu, C.; Liu, Z.; Wu, L.; Ren, J. S.; Qu, X. G. Nucleoside triphosphates as promoters to enhance nanoceria enzyme-like activity and for single-nucleotide polymorphism typing. Adv. Funct. Mater. 2014, 24, 1624–1630.

26

Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 121, 2344–2348.

27

Pautler, R.; Kelly, E. Y.; Huang, P. -J. J.; Cao, J.; Liu, B. W.; Liu, J. W. Attaching DNA to nanoceria: Regulating oxidase activity and fluorescence quenching. ACS Appl. Mater. Interfaces 2013, 5, 6820–6825.

28

Bülbül, G.; Hayat, A.; Andreescu, S. ssDNA-functionalized nanoceria: A redox-active aptaswitch for biomolecular recognition. Adv. Healthc. Mater. 2016, 5, 822–828.

29

Singh, S.; Dosani, T.; Karakoti, A. S.; Kumar, A.; Seal, S.; Self, W. T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011, 32, 6745–6753.

30

Perez, J. M.; Asati, A.; Nath, S.; Kaittanis, C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 2008, 4, 552–556.

31

Liu, X. Y.; Wei, W.; Yuan, Q.; Zhang, X.; Li, N.; Du, Y. G.; Ma, G. H.; Yan, C. H.; Ma, D. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 2012, 48, 3155–3157.

32

Karakoti, A. S.; Singh, S.; Kumar, A.; Malinska, M.; Kuchibhatla, S. V. N. T.; Wozniak, K.; Self, W. T.; Seal, S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 2009, 131, 14144–14145.

33

Li, Y. Y.; He, X.; Yin, J. -J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832–1835.

34

Xue, Y.; Zhai, Y. W.; Zhou, K. B.; Wang, L.; Tan, H. N.; Luan, Q. F.; Yao, X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chem. —Eur. J. 2012, 18, 11115–11122.

35

Zhai, Y. W.; Zhang, Y.; Qin, F.; Yao, X. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens. Bioelectron. 2015, 70, 130–136.

36

Chen, C. X.; Lu, L. X.; Zheng, Y.; Zhao, D.; Yang, F.; Yang, X. R. A new colorimetric protocol for selective detection of phosphate based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal. Methods 2015, 7, 161–167.

37

Liu, C. -H.; Yu, C. -J.; Tseng, W. -L. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal. Chim. Acta 2012, 745, 143–148.

38

Liu, Y.; Purich, D. L.; Wu, C. C.; Wu, Y.; Chen, T.; Cui, C.; Zhang, L. Q.; Cansiz, S.; Hou, W. J.; Wang, Y. Y. et al. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzymelike properties. J. Am. Chem. Soc. 2015, 137, 14952–14958.

39

Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 2017, 53, 424–427.

40

Park, K. S.; Kim, M. I.; Cho, D. -Y.; Park, H. G. Label-free colorimetric detection of nucleic acids based on target- induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 2011, 7, 1521–1525.

41

Liu, B. W.; Liu, J. W. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 2015, 7, 13831–13835.

42

Li, X. N.; Wen, F.; Creran, B.; Jeong, Y.; Zhang, X. R.; Rotello, V. M. Colorimetric protein sensing using catalytically amplified sensor arrays. Small 2012, 8, 3589–3592.

43

Zhang, X. -Q.; Gong, S. -W.; Zhang, Y.; Yang, T.; Wang, C. -Y.; Gu, N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater. Chem. 2010, 20, 5110–5116.

44

Zhu, R.; Zhou, Y.; Wang, X. -L.; Liang, L. -P.; Long, Y. -J.; Wang, Q. -L.; Zhang, H. -J.; Huang, X. -X.; Zheng, H. -Z. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 2013, 117, 127–132.

45

Zhang, D. Y.; Chen, Z.; Omar, H.; Deng, L.; Khashab, N. M. Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl. Mater. Interfaces 2015, 7, 4589–4594.

46

Long, Y. J.; Li, Y. F.; Liu, Y.; Zheng, J. J.; Tang, J.; Huang, C. Z. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 2011, 47, 11939–11941.

47

Wang, C. -I.; Huang, C. -C.; Lin, Y. -W.; Chen, W. -T.; Chang, H. -T. Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Anal. Chim. Acta 2012, 745, 124–130.

48

Deng, H. -H.; Weng, S. -H.; Huang, S. -L.; Zhang, L. -N.; Liu, A. -L.; Lin, X. -H.; Chen, W. Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2014, 852, 218–222.

49

Jv, Y.; Li, B. X.; Cao, R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017–8019.

50

Wang, S.; Chen, W.; Liu, A. -L.; Hong, L.; Deng, H. -H.; Lin, X. -H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 2012, 13, 1199–1204.

51

Ni, P. J.; Dai, H. C.; Wang, Y. L.; Sun, Y. J.; Shi, Y.; Hu, J. T.; Li, Z. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens. Bioelectron. 2014, 60, 286–291.

52

Lin, Y. H.; Huang, Y. Y.; Ren, J. S.; Qu, X. G. Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater. 2014, 6, e114.

53

Shah, J.; Purohit, R.; Singh, R.; Karakoti, A. S.; Singh, S. ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloid Interface Sci. 2015, 456, 100–107.

54

Sharma, T. K.; Ramanathan, R.; Weerathunge, P.; Mohammadtaheri, M.; Daima, H. K.; Shukla, R.; Bansal, V. Aptamer-mediated "turn-off/turn-on" nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 2014, 50, 15856–15859.

55

Hizir, M. S.; Top, M.; Balcioglu, M.; Rana, M.; Robertson, N. M.; Shen, F. S.; Sheng, J.; Yigit, M. V. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 2016, 88, 600–605.

56

Lien, C. -W.; Chen, Y. -C.; Chang, H. -T.; Huang, C. -C. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 2013, 5, 8227–8234.

57

Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y. -T. et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem., Int. Ed. 2011, 50, 11994–11998.

58

Zhan, P. F.; Wang, Z. -G.; Li, N.; Ding, B. Q. Engineering gold nanoparticles with DNA ligands for selective catalytic oxidation of chiral substrates. ACS Catal. 2015, 5, 1489– 1498.

59

Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed. 2015, 54, 7176–7180.

60

Xu, C.; Zhao, C. Q.; Li, M.; Wu, L.; Ren, J. S.; Qu, X. G. Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions. Small 2014, 10, 1841–1847.

61

Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin−graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290.

62

Solanki, P. R.; Kaushik, A.; Agrawal, V. V.; Malhotra, B. D. Nanostructured metal oxide-based biosensors. NPG Asia Mater. 2011, 3, 17–24.

63

Koziej, D.; Lauria, A.; Niederberger, M. 25th anniversary article: Metal oxide particles in materials science: Addressing all length scales. Adv. Mater. 2014, 26, 235–257.

64

Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.

65

Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.

66

Zhang, Y.; Wang, Z. Y.; Li, X. J.; Wang, L.; Yin, M.; Wang, L. H.; Chen, N.; Fan, C. H.; Song, H. Y. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Adv. Mater. 2016, 28, 1387–1393.

67

Dong, J. L.; Song, L.; Yin, J. -J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959–1970.

68

Chen, W.; Chen, J.; Feng, Y. -B.; Hong, L.; Chen, Q. -Y.; Wu, L. -F.; Lin, X. -H.; Xia, X. -H. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 2012, 137, 1706–1712.

69

Das, M.; Patil, S.; Bhargava, N.; Kang, J. -F.; Riedel, L. M.; Seal, S.; Hickman, J. J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 2007, 28, 1918–1925.

70

Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

71

Kuchma, M. H.; Komanski, C. B.; Colon, J.; Teblum, A.; Masunov, A. E.; Alvarado, B.; Babu, S.; Seal, S.; Summy, J.; Baker, C. H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine 2010, 6, 738–744.

72

Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.

73

Jiao, X.; Song, H. J.; Zhao, H. H.; Bai, W.; Zhang, L. C.; Lv, Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 2012, 4, 3261–3267.

74

Tian, Z. M.; Li, J.; Zhang, Z. Y.; Gao, W.; Zhou, X. M.; Qu, Y. Q. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 2015, 59, 116–124.

75

Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

76

Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

77

Hayat, A.; Bulbul, G.; Andreescu, S. Probing phosphatase activity using redox active nanoparticles: A novel colorimetric approach for the detection of enzyme activity. Biosens. Bioelectron. 2014, 56, 334–339.

78

Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113.

79

Cafun, J. -D.; Kvashnina, K. O.; Casals, E.; Puntes, V. F.; Glatzel, P. Absence of Ce3+ sites in chemically active colloidal ceria nanoparticles. ACS Nano 2013, 7, 10726–10732.

80

Singh, R.; Singh, S. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surf. B 2015, 132, 78–84.

81

Xue, Y.; Luan, Q. F.; Yang, D.; Yao, X.; Zhou, K. B. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C 2011, 115, 4433–4438.

82

Silva, G. A. Nanomedicine: Seeing the benefits of ceria. Nat. Nanotechnol. 2006, 1, 92–94.

83

Hirst, S. M.; Karakoti, A. S.; Tyler, R. D.; Sriranganathan, N.; Seal, S.; Reilly, C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856.

84

Cheng, H. J.; Lin, S. C.; Muhammad, F.; Lin, Y. -W.; Wei, H. Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 2016, 1, 1336–1343.

85

Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide- decorated nanoparticles. Eur. J. Pharm. Biopharm. 2004, 58, 327–341.

86

Sardesai, N. P.; Andreescu, D.; Andreescu, S. Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes. J. Am. Chem. Soc. 2013, 135, 16770–16773.

87

McCormack, R. N.; Mendez, P.; Barkam, S.; Neal, C. J.; Das, S.; Seal, S. Inhibition of nanoceria's catalytic activity due to Ce3+ site-specific interaction with phosphate ions. J. Phys. Chem. C 2014, 118, 18992–19006.

88

Gao, W.; Wei, X. P.; Wang, X. J.; Cui, G. W.; Liu, Z. H.; Tang, B. A competitive coordination-based CeO2 nanowire- DNA nanosensor: Fast and selective detection of hydrogen peroxide in living cells and in vivo. Chem. Commun. 2016, 52, 3643–3646.

89

Bhushan, B.; Gopinath, P. Antioxidant nanozyme: A facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J. Mater. Chem. B 2015, 3, 4843–4852.

90

Chen, Z. W.; Yin, J. -J.; Zhou, Y. -T.; Zhang, Y.; Song, L.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

91

Liu, B. W.; Han, X.; Liu, J. W. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 2016, 8, 13620–13626.

92

Wang, L. J.; Min, Y.; Xu, D. D.; Yu, F. J.; Zhou, W. Z.; Cuschieri, A. Membrane lipid peroxidation by the peroxidase- like activity of magnetite nanoparticles. Chem. Commun. 2014, 50, 11147–11150.

93

Zhang, Z. X.; Wang, Z. J.; Wang, X. L.; Yang, X. R. Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sens. Actuators B 2010, 147, 428–433.

94

Liu, S. H.; Lu, F.; Xing, R. M.; Zhu, J. -J. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem. —Eur. J. 2011, 17, 620–625.

95

Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464.

96

Mohan, D.; Pittman, C. U., Jr. Arsenic removal from water/ wastewater using adsorbents: A critical review. J. Hazard. Mater. 2007, 142, 1–53.

97

Hua, M.; Zhang, S. J.; Pan, B. C.; Zhang, W. M.; Lv, L.; Zhang, Q. X. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331.

98

Turcheniuk, K.; Tarasevych, A. V.; Kukhar, V. P.; Boukherroub, R.; Szunerits, S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 2013, 5, 10729–10752.

99

Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter, E. E. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. J. Am. Chem. Soc. 2007, 129, 2482–2487.

100

Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.

101

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

102

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

103

Zheng, W. C.; Fan, H. L.; Wang, L.; Jin, Z. X. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir 2015, 31, 11671–11677.

104

Hayat, A.; Andreescu, D.; Bulbul, G.; Andreescu, S. Redox reactivity of cerium oxide nanoparticles against dopamine. J. Colloid Interface Sci. 2014, 418, 240–245.

105

Golub, E.; Albada, H. B.; Liao, W. -C.; Biniuri, Y.; Willner, I. Nucleoapzymes: Hemin/G-quadruplex DNAzyme– aptamer binding site conjugates with superior enzyme-like catalytic functions. J. Am. Chem. Soc. 2016, 138, 164–172.

106

Albada, H. B.; de Vries, J. W.; Liu, Q.; Golub, E.; Klement, N.; Herrmann, A.; Willner, I. Supramolecular micelle-based nucleoapzymes for the catalytic oxidation of dopamine to aminochrome. Chem. Commun. 2016, 52, 5561–5564.

107

Zhang, X. Y.; Wang, S. Q.; Xu, L. X.; Feng, L.; Ji, Y.; Tao, L.; Li, S. X.; Wei, Y. Biocompatible polydopamine fluorescent organic nanoparticles: Facile preparation and cell imaging. Nanoscale 2012, 4, 5581–5584.

108

Yildirim, A.; Bayindir, M. Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal. Chem. 2014, 86, 5508–5512.

109

Lin, J. -H.; Yu, C. -J.; Yang, Y. -C.; Tseng, W. -L. Formation of fluorescent polydopamine dots from hydroxyl radical- induced degradation of polydopamine nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 15124–15130.

110

Zhang, W.; Hu, S. L.; Yin, J. -J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

111

Sang, J. L.; Wu, R. L.; Guo, P. P.; Du, J.; Xu, S. M.; Wang, J. D. Affinity-tuned peroxidase-like activity of hydrogel-supported Fe3O4 nanozyme through alteration of crosslinking concentration. J. Appl. Polym. Sci. 2016, 133, 43065.

112

Gao, Y.; Wei, Z.; Li, F.; Yang, Z. M.; Chen, Y. M.; Zrinyi, M.; Osada, Y. Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem. 2014, 16, 1255–1261.

113

Mu, J. S.; Zhang, L.; Zhao, M.; Wang, Y. Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl. Mater. Interfaces 2014, 6, 7090–7098.

114

Mu, J. S.; Zhang, L.; Zhao, M.; Wang, Y. Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A: Chem. 2013, 378, 30–37.

115

Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.

116

Liu, Q. Y.; Yang, Y. T.; Li, H.; Zhu, R. R.; Shao, Q.; Yang, S. G.; Xu, J. J. Nio nanoparticles modified with 5, 10, 15, 20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 2015, 64, 147–153.

117

Yuan, J.; Cen, Y.; Kong, X. -J.; Wu, S.; Liu, C. -L.; Yu, R. -Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces 2015, 7, 10548–10555.

118

Lu, Y. Z.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623.

119

Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

120

Lin, Y. H.; Zhao, A. D.; Tao, Y.; Ren, J. S.; Qu, X. G. Ionic liquid as an efficient modulator on artificial enzyme system: Toward the realization of high-temperature catalytic reactions. J. Am. Chem. Soc. 2013, 135, 4207–4210.

121

Comotti, M.; Della Pina, C.; Falletta, E.; Rossi, M. Aerobic oxidation of glucose with gold catalyst: Hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal. 2006, 348, 313–316.

122

Wang, X. -X.; Wu, Q.; Shan, Z.; Huang, Q. -M. BSA- stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 2011, 26, 3614– 3619.

123

Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451–7458.

124

Ansar, S. M.; Kitchens, C. L. Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-nitrophenol. ACS Catal. 2016, 6, 5553–5560.

125

Lien, C. -W.; Huang, C. -C.; Chang, H. -T. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem. Commun. 2012, 48, 7952–7954.

126

Herne, T. M.; Tarlov, M. J. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920.

127

Liu, J. W. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496.

128

Weerathunge, P.; Ramanathan, R.; Shukla, R.; Sharma, T. K.; Bansal, V. Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 2014, 86, 11937–11941.

129

Wang, C. S.; Liu, C.; Luo, J. B.; Tian, Y. P.; Zhou, N. D. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 936, 75–82.

130

Hu, J. T.; Ni, P. J.; Dai, H. C.; Sun, Y. J.; Wang, Y. L.; Jiang, S.; Li, Z. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles. Analyst 2015, 140, 3581–3586.

131

Lang, N. J.; Liu, B. W.; Liu, J. W. Characterization of glucose oxidation by gold nanoparticles using nanoceria. J. Colloid Interface Sci. 2014, 428, 78–83.

132

Chen, D.; Feng, H. B.; Li, J. H. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053.

133

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

134

Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301.

135

Liu, B. W.; Salgado, S.; Maheshwari, V.; Liu, J. W. DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 2016, 26, 41–49.

136

Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. —Eur. J. 2010, 16, 3617–3621.

137

Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G. Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res. 2011, 4, 908–920.

138

Yang, Z. T.; Qian, J.; Yang, X. W.; Jiang, D.; Du, X. J.; Wang, K.; Mao, H. P.; Wang, K. A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens. Bioelectron. 2015, 65, 39–46.

139

Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

140

Dong, Y.; Li, J.; Shi, L.; Guo, Z. G. Iron impurities as the active sites for peroxidase-like catalytic reaction on graphene and its derivatives. ACS Appl. Mater. Interfaces 2015, 7, 15403–15413.

141

Šljukić, B.; Banks, C. E.; Compton, R. G. Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett. 2006, 6, 1556–1558.

142

Zhao, R. S.; Zhao, X.; Gao, X. F. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem. —Eur. J. 2015, 21, 960–964.

143

Song, Y. J.; Chen, Y.; Feng, L. Y.; Ren, J. S.; Qu, X. G. Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem. Commun. 2011, 47, 4436–4438.

144

Hu, C.; Xi, Q.; Ge, J.; Luo, F. -Y.; Tang, L. -J.; Jiang, J. -H.; Yu, R. -Q. Graphene-hemin hybrid nanosheets as a label- free colorimetric platform for DNA and small molecule assays. RSC Adv. 2014, 4, 64252–64257.

145

Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C. -Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphene- supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem., Int. Ed. 2012, 51, 3822–3825.

146

Lu, C. -H.; Yang, H. -H.; Zhu, C. -L.; Chen, X.; Chen, G. -N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed. 2009, 48, 4785–4787.

147

Liu, B. W.; Sun, Z. Y.; Zhang, X.; Liu, J. W. Mechanisms of DNA sensing on graphene oxide. Anal. Chem. 2013, 85, 7987–7993.

148

Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

149

Lu, G.; Maragakis, P.; Kaxiras, E. Carbon nanotube interaction with DNA. Nano Lett. 2005, 5, 897–900.

150

Staii, C.; Johnson, A. T., Jr.; Chen, M.; Gelperin, A. DNA- decorated carbon nanotubes for chemical sensing. Nano Lett. 2005, 5, 1774–1778.

151

Zhang, Z. J.; Liu, B. W.; Liu, J. W. Molecular imprinting for substrate selectivity and enhanced activity of enzyme mimics. Small, in press, DOI: 10.1002/smll.201602730.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 November 2016
Revised: 16 December 2016
Accepted: 18 December 2016
Published: 21 January 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

Funding for work from the Liu lab at the University of Waterloo is from the Canadian Foundation for Innovation, and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Return