Journal Home > Volume 10 , Issue 4

Transition metal carbide (TMC) nanomaterials are promising alternatives to Pt, and are widely used as heterogeneous electrocatalysts for the electrochemical hydrogen evolution reaction (HER). In this work, a bromide-induced wet-chemistry strategy to synthesize Co2C nanoparticles (NPs) was developed. Such NPs exhibited high electrocatalytic activity (η = 181 mV for j = -10 mA·cm-2) and long-term stability (no obvious performance decrease after 4, 000 cycles) for the HER. This study will pave the way for the design and fabrication of TMC NPs via a wet- chemistry method, and will have significant impacts on broader areas such as nanocatalysis and energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction

Show Author's information Siwei Li1,§Ce Yang1,§Zhen Yin1,2,§Hanjun Yang1Yifu Chen1Lili Lin1Mengzhu Li1Weizhen Li1Gang Hu3Ding Ma1( )
College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
State Key Laboratory of Separation Membranes and Membrane ProcessesDepartment of Chemical Engineering, Tianjin Polytechnic UniversityTianjin300387China
Israel Chemicals LimitedShanghai200021China

§ These authors contributed equally to this work.

Abstract

Transition metal carbide (TMC) nanomaterials are promising alternatives to Pt, and are widely used as heterogeneous electrocatalysts for the electrochemical hydrogen evolution reaction (HER). In this work, a bromide-induced wet-chemistry strategy to synthesize Co2C nanoparticles (NPs) was developed. Such NPs exhibited high electrocatalytic activity (η = 181 mV for j = -10 mA·cm-2) and long-term stability (no obvious performance decrease after 4, 000 cycles) for the HER. This study will pave the way for the design and fabrication of TMC NPs via a wet- chemistry method, and will have significant impacts on broader areas such as nanocatalysis and energy conversion.

Keywords: hydrogen evolution reaction, synergetic effect, Co2C nanoparticle, wet-chemistry synthesis

References(31)

1

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.

2

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.

3

Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896-8909.

4

Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186- 19192.

5

Tahir, M.; Mahmood, N.; Zhang, X. X.; Mahmood, T.; Butt, F. K.; Aslam, I.; Tanveer, M.; Idrees, F.; Khalid, S.; Shakir, I. et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015, 8, 3725-3736.

6

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688-2694.

7

Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild- Pedersen, F.; Nørskov, J.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566-575.

8

Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965-7972.

9

Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921-928.

10

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594-1601.

11

Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108-1115.

12

Ma, D.; Shu, Y. Y.; Cheng, M. J.; Xu, Y. D.; Bao, X. H. On the induction period of methane aromatization over Mo- based catalysts. J. Catal. 2000, 194, 105-114.

13

Ma, D.; Wang, D. Z.; Su, L. L.; Shu, Y. Y.; Xu, Y. D.; Bao, X. H. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization: A TP technique investigation. J. Catal. 2002, 208, 260-269.

14

Ji, N.; Zhang, T.; Zheng, M. Y.; Wang, A. Q.; Wang, H.; Wang, X. D.; Chen, J. G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem., Int. Ed. 2008, 47, 8510-8513.

15

Yang, C.; Zhao, H. B.; Hou, Y. L.; Ma, D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 15814-15821.

16

Li, J.; Liu, L. T.; Liu, Y.; Li, M. Z.; Zhu, Y. H.; Liu, H. C.; Kou, Y.; Zhang, J. Z.; Han, Y.; Ma, D. Direct conversion of cellulose using carbon monoxide and water on a Pt-Mo2C/C catalyst. Energy Environ. Sci. 2014, 7, 393-398.

17

Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974-978.

18

Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703-12706.

19

Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943-951.

20

Fan, X. J.; Peng, Z. W.; Ye, R. Q.; Zhou, H. Q.; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407-7418.

21

Xiao, P.; Ge, X. M.; Wang, H. B.; Liu, Z. L.; Fisher, A.; Wang, X. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1520-1526.

22

Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 6407- 6410.

23

Wan, C.; Leonard, B. M. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem. Mater. 2015, 27, 4281-4288.

24

Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547-549.

25

Pei, Y. -P.; Liu, J. -X.; Zhao, Y. -H.; Ding, Y. -J.; Liu, T.; Dong, W. -D.; Zhu, H. -J.; Su, H. -Y.; Yan, L.; Li, J. -L. et al. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface. ACS Catal. 2015, 5, 3620-3624.

26

Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016, 538, 84-87.

27

Yang, Z. Y.; Zhao, T. S.; Huang, X. X.; Chu, X.; Tang, T. Y.; Ju, Y. M.; Wang, Q.; Hou, Y. L.; Gao, S. Modulating the phases of iron carbide nanoparticles: From a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 2017, 8, 473-481.

28

Huba, Z. J.; Carpenter, E. E. Size and phase control of cobalt-carbide nanoparticles using OH and Cl anions in a polyol process. J. Appl. Phys. 2012, 111, 07B529.

29

Wang, Z. -L.; Hao, X. -F.; Jiang, Z.; Sun, X. -P.; Xu, D.; Wang, J.; Zhong, H. -X.; Meng, F. -L.; Zhang, X. -B. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15070-15073.

30

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100-2104.

31

Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919-1923.

File
nr-10-4-1322_ESM.pdf (808.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2016
Revised: 16 December 2016
Accepted: 18 December 2016
Published: 18 February 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21473003 and 21303119) and the National Basic Research Program of China (No. 2013CB933100). C. Y. acknowledges the financial support of China Postdoctoral Science Foundation (No. 2015M580011). XAS analysis was performed at the Beijing Synchrotron Radiation Facility.

Return