Journal Home > Volume 10 , Issue 5

Thermoelectric materials, which can convert waste heat into electricity, have received increasing research interest in recent years. This paper describes the recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. We start our discussion with the strategies of improving the power factor of a given material by using nanoheterostructures. Then we discuss the methods of decreasing thermal conductivity. Finally, we highlight a way of decoupling power factor and thermal conductivity, namely, incorporating phase-transition materials into a nanowire heterostructure. We have explored the lead telluride–copper telluride thermoelectric nanowire heterostructure in this work. Future possible ways to improve the figure of merit are discussed at the end of this paper.


menu
Abstract
Full text
Outline
About this article

Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures

Show Author's information Wei Zheng1,§Biao Xu1,§Lin Zhou2Yilong Zhou3Haimei Zheng3Chenghan Sun1Enzheng Shi1Tanner Dale Fink1Yue Wu1( )
Department of Chemical and Biological Engineering Iowa State UniversityAmes IA 50011 USA
Ames Laboratory, Department of Energy Iowa State UniversityAmes IA 50011 USA
Material Science Division Lawrence Berkeley National LaboratoryBerkeleyCA 94720 USA

§ These authors contributed equally to this work.

Abstract

Thermoelectric materials, which can convert waste heat into electricity, have received increasing research interest in recent years. This paper describes the recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. We start our discussion with the strategies of improving the power factor of a given material by using nanoheterostructures. Then we discuss the methods of decreasing thermal conductivity. Finally, we highlight a way of decoupling power factor and thermal conductivity, namely, incorporating phase-transition materials into a nanowire heterostructure. We have explored the lead telluride–copper telluride thermoelectric nanowire heterostructure in this work. Future possible ways to improve the figure of merit are discussed at the end of this paper.

Keywords: phase change, thermoelectrics, nanoheterostructures

References(34)

1

Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

2

Wang, H.; Pei, Y. Z.; LaLonde, A. D.; Snyder, G. J. Heavily doped p-type PbSe with high thermoelectric performance: An alternative for PbTe. Adv. Mater. 2011, 23, 1366–1370.

3

Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectric. Nature 2011, 473, 66–69.

4

Heremans, J. P.; Jovoviv, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557.

5

Yang, H. R.; Bahk, J. H.; Day, T.; Mohammed, A. M. S.; Snyder, G. J.; Shakouri, A.; Wu, Y. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nano­composites through minority carrier blocking. Nano Lett. 2015, 15, 1349–1355.

6

Wu, D.; Pei, Y. L.; Wang, Z.; Wu, H. J.; Huang, L.; Zhao, L. D.; He, J. Q. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites. Adv. Func. Mater. 2014, 24, 7763–7771.

7

Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Copper ion liquid-like thermoelectric. Nat. Mater. 2012, 11, 422–425.

8

Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.

9

Li, J.; Sui, J. H.; Pei, Y. L.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J. Q.; Zhao, L. D. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543– 8547.

10

Lin, H.; Tan, G. J. Shen, J. N.; Hao, S. Q.; Wu, L. M.; Calta, N.; Malliakas, C.; Wang, S.; Uher, C.; Wolverton, C. et al. Concerted rattling CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem., Int. Ed. 2016, 55, 11431–11436.

11

Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.

12

Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, Pawan. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.

13

Liang, Y. T.; Lu, C. G.; Ding, D. F.; Zhao, M.; Wang, D. W.; Hu, C.; Qiu, J. S.; Xie, G.; Tang, Z. Y. Capping nanoparticles with grapheme quantum dots for enhanced thermoelectric performance. Chem. Sci. 2015, 6, 4103–4108.

14

Ibáñez, M.; Zamani, R.; Lalonde, A.; Cadavid, D.; Li, W. H.; Shavel, A.; Arbiol, J.; Morante, J. R.; Gorsse, S.; Snyder, G. J. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134, 4060–4063.

15

Scheele, M.; Oeschler, N.; Veremchuk, I.; Reinsberg, K. G.; Kreuziger, A. M.; Kornowski, A.; Broekaert, J.; Klinke, C.; Weller, H. ZT enhancement in solution-grown Sb(2−x)BixTe3 nanoplatelets. ACS Nano 2010, 4, 4283–4291.

16

Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.

17

Dalpian, G. M.; Chelikowsky, J. R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 2006, 96, 226802.

18

Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.

19

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4879.

20

Banin, U.; Yuval, B. S.; Vinokurov, K. Hybrid semiconductor– metal nanoparticles: From architecture to function. Chem. Mater. 2014, 26, 97–110.

21

Ma, Y.; Heijl, R.; Palmqvist, A. E. Composite thermoelectric materials with embedded nanoparticles. J. Mater. Sci. 2013, 48, 2767–2778.

22

Zhou, W. W.; Zhu, J. X.; Li, D.; Hng, H. H.; Boey, F. Y. C.; Ma, J.; Zhang, H.; Yan, Q. Y. Binary-phased nanoparticles for enhanced thermoelectric properties. Adv. Mater. 2009, 21, 3196–3200.

23

Heremans, J. P.; Thrush, C. M.; Morelli, D. T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B. 2004, 70, 115334.

24

Wang, Y.; Chen, X.; Cui, T.; Niu, Y. L.; Wang, Y. C.; Wang, M.; Ma, Y. M.; Zou, G. T. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase. Phys. Rev. B. 2007, 76, 155127.

25

Pei, Y. Z.; Heinz, N. A.; Snyder, G. J. Allowing to increase the band gap for improving thermoelectric properties of Ag2Te. J. Mater. Chem. 2011, 21, 18256–18260.

26

Li, S. K.; Xin, C.; Liu, X. R.; Feng, Y. C.; Liu, Y. D.; Zheng, J. X.; Liu, F. S.; Huang, Q. Z.; Qiu, Y. M.; He, J. Q. et al. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 2016, 30, 780–789.

27

Callaway, J.; Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149–1154.

28

Feng, T. L.; Ruan, X. L. Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectric and thermal management: A review. J. Nanomater. 2014, 2014, Article ID 206370.

29

Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J. D.; Ortega, S.; Cadavid, D.; Morante, J. R.; Arbiol, J.; Cabot, A. Core-shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe-PbS thermoelectric properties. ACS Nano 2013, 7, 2573–2586.

30

Mingo, N.; Hauser, D.; Kobayashi, N. P.; Plissonnier, M.; Shakouri, A. "Nanoparticle-in-alloy" approach to efficient thermoelectric: Silicides in SiGe. Nano Lett. 2009, 9, 711–715.

31

Fang, H. Y.; Feng, T. L.; Yang, H. R.; Ruan, X. L.; Wu, Y. Synthesis and thermoelectric properties of compositional- modulated lead telluride–bismuth telluride nanowire heterostructures. Nano Lett. 2013, 13, 2058–2063.

32

Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.

33

Yu, B.; Liu, W. S.; Chen, S.; Wang, H.; Wang, H. Z.; Chen, G.; Ren, Z. F. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 2012, 1, 472–478.

34

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 114, 8706–8715.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 October 2016
Revised: 30 November 2016
Accepted: 17 December 2016
Published: 27 March 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

Y. W. gratefully thank the support from Office of Naval Research, Award Number N00014-16-1-2066.

Return