Journal Home > Volume 10 , Issue 4

Designing efficient electrocatalysts for the hydrogen evolution reaction (HER) has attracted substantial attention owing to the urgent demand for clean energy to face the energy crisis and subsequent environmental issues in the near future. Among the large variety of HER catalysts, molybdenum disulfide (MoS2) has been regarded as the most famous catalyst owing to its abundance, low price, high efficiency, and definite catalytic mechanism. In this study, defect-engineered MoS2 nanowall (NW) catalysts with controllable thickness were fabricated and exhibited a significantly enhanced HER performance. Benefiting from the highly exposed active edge sites and the rough surface accompanied by the robust NW structure, the defect-rich MoS2 NW catalyst with an optimized thickness showed an ultralow onset overpotential of 85 mV, a high current density of 310.6 mA·cm-2 at η = 300 mV, and a low potential of 95 mV to drive a 10 mA·cm-2 cathodic current. Additionally, excellent electrochemical stability was realized, making this freestanding NW catalyst a promising candidate for practical water splitting and hydrogen production.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction

Show Author's information Junfeng Xie1,2( )Haichao Qu1Jianping Xin1Xinxia Zhang1Guanwei Cui1Xiaodong Zhang2Jian Bao2Bo Tang1Yi Xie2( )
College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationInstitute of Molecular and Nano ScienceShandong Normal UniversityJinan250014China
Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230026China

Abstract

Designing efficient electrocatalysts for the hydrogen evolution reaction (HER) has attracted substantial attention owing to the urgent demand for clean energy to face the energy crisis and subsequent environmental issues in the near future. Among the large variety of HER catalysts, molybdenum disulfide (MoS2) has been regarded as the most famous catalyst owing to its abundance, low price, high efficiency, and definite catalytic mechanism. In this study, defect-engineered MoS2 nanowall (NW) catalysts with controllable thickness were fabricated and exhibited a significantly enhanced HER performance. Benefiting from the highly exposed active edge sites and the rough surface accompanied by the robust NW structure, the defect-rich MoS2 NW catalyst with an optimized thickness showed an ultralow onset overpotential of 85 mV, a high current density of 310.6 mA·cm-2 at η = 300 mV, and a low potential of 95 mV to drive a 10 mA·cm-2 cathodic current. Additionally, excellent electrochemical stability was realized, making this freestanding NW catalyst a promising candidate for practical water splitting and hydrogen production.

Keywords: electrocatalysis, water splitting, hydrogen evolution reaction, molybdenum disulfide (MoS2), nanowall

References(46)

1

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

2

Morales-Guio, C. G.; Stern, L. -A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

3

Xie, J.; Xie, Y. Structural engineering of electrocatalysts for the hydrogen evolution reaction: Order or disorder? ChemCatChem 2015, 7, 2568–2580.

4

Xie, J.; Xie, Y. Transition metal nitrides for electrocatalytic energy conversion: Opportunities and challenges. Chem. Eur. J. 2016, 22, 3588–3598.

5

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

6

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

7

Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

8

Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

9

Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426–3433.

10

Wang, H.; Lu, Z.; Xu, S.; Kong, D.; Cha, J. J.; Zheng, G.; Hsu, P. -C.; Yan, K.; Bradshaw, D.; Prinz, F. B.; Cui, Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 19701–19706.

11

Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

12

Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

13

Yang, L.; Zhou, W.; Lu, J.; Hou, D.; Ke, Y.; Li, G.; Tang, Z.; Kang, X.; Chen, S. Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy 2016, 22, 490–498.

14

Zhou, W.; Zhou, K.; Hou, D.; Liu, X.; Li, G.; Sang, Y.; Liu, H.; Li, L.; Chen, S. Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2014, 6, 21534–21540.

15

Zhou, W.; Hou, D.; Sang, Y.; Yao, S.; Zhou, J.; Li, G.; Li, L.; Liu, H.; Chen, S. MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2014, 2, 11358–11364.

16

Yang, L.; Zhou, W.; Hou, D.; Zhou, K.; Li, G.; Tang, Z.; Li, L.; Chen, S. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale 2015, 7, 5203–5208.

17

Xie, J.; Xin, J.; Cui, G.; Zhang, X.; Zhou, L.; Wang, Y.; Liu, W.; Wang, C.; Ning, M.; Xia, X.; Zhao, Y.; Tang, B. Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorg. Chem. Front. 2016, 3, 1160–1166.

18

Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

19

Guo, Y.; Zhang, X.; Zhang, X.; You, T. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J. Mater. Chem. A 2015, 3, 15927–15934.

20

Lu, Z.; Zhu, W.; Yu, X.; Zhang, H.; Li, Y.; Sun, X.; Wang, X.; Wang, H.; Wang, J.; Luo, J.; Lei, X.; Jiang, L. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

21

Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M. Edge- oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168.

22

Xie, J.; Li, S.; Zhang, X.; Zhang, J.; Wang, R.; Zhang, H.; Pan, B.; Xie, Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615–4620.

23

Chang, Y. -H.; Nikam, R. D.; Lin, C. -T.; Huang, J. -K.; Tseng, C. -C.; Hsu, C. -L.; Cheng, C. -C.; Su, C. -Y.; Li, L. -J.; Chua, D. H. C. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2014, 6, 17679–17685.

24

Chang, Y. -H.; Lin, C. -T.; Chen, T. -Y.; Hsu, C. -L.; Lee, Y. -H.; Zhang, W.; Wei, K. -H.; Li, L. -J. Highly efficient electrocatalytic hydrogen production by MoSx grown on grapheme-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

25

Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262– 1267.

26

Zhao, X.; Ma, X.; Sun, J.; Li, D.; Yang, X. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 2016, 10, 2159–2166.

27

Smith, A. J.; Chang, Y. H.; Raidongia, K.; Chen, T. Y.; Li, L. J.; Huang, J. Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production. Adv. Energy Mater. 2014, 4, 1400398.

28

Jiang, Y.; Li, X.; Yu, S.; Jia, L.; Zhao, X.; Wang, C. Reduced graphene oxide-modified carbon nanotube/polyimide film supported MoS2 nanoparticles for electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2015, 25, 2693–2700.

29

Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.

30

Li, X.; Zhang, L.; Huang, M.; Wang, S.; Li, X.; Zhu, H. Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2016, 4, 14789–14795.

31

Li, Y.; Zhang, L.; Xiang, X.; Yan, D.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high- efficiency electrochemical water oxidation. J. Mater. Chem. A 2014, 2, 13250–13258.

32

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

33

Xie, J.; Sun, X.; Zhang, N.; Xu, K.; Zhou, M.; Xie, Y. Layer- by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2013, 2, 65–74.

34

Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two- dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

35

Zhang, X.; Xie, Y. Recent advances in free-standing two- dimensional crystals with atomic thickness: Design, assembly and transfer strategies. Chem. Soc. Rev. 2013, 42, 8187–8199.

36

Xie, J.; Wang, R.; Bao, J.; Zhang, X.; Zhang, H.; Li, S.; Xie, Y. Zirconium trisulfide ultrathin nanosheets as efficient catalysts for water oxidation in both alkaline and neutral solutions. Inorg. Chem. Front. 2014, 1, 751–756.

37

Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Intralayered Ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2016, DOI: 10.1002/adma.201604765.

38

Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.

39

Liao, L.; Zhu, J.; Bian, X.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.

40

Lu, Z.; Zhang, H.; Zhu, W.; Yu, X.; Kuang, Y.; Chang, Z.; Lei, X.; Sun, X. In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chem. Commun. 2013, 49, 7516–7518.

41

Merki, D.; Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

42

Vrubel, H.; Merki, D.; Hu, X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

43

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

44

Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

45

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

46

Chen, W. -F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Hydrogen- evolution catalysts based on non-noble metal nickel– molybdenum nitride nanosheets. Angew., Chem., Int. Ed. 2012, 51, 6131–6135.

File
nr-10-4-1178_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 November 2016
Revised: 10 December 2016
Accepted: 15 December 2016
Published: 07 March 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2015CB932302), the National Natural Science Foundation of China (Nos. 21501112, 21331005, 21401181, U1532265, U1632149, 91422303, and 11321503), and Natural Science Foundation of Shandong Province (No. ZR2014BQ007).

Return