Journal Home > Volume 10 , Issue 7

A novel, miniaturized microfluidic platform was developed for the simultaneous detection and removal of polybrominated diphenyl ethers (PBDEs). The platform consists of a polydimethylsiloxane (PDMS) microfluidic chip for an immunoreaction step, a PDMS chip with an integrated screen-printed electrode (SPCE) for detection, and a PDMS-reduced graphene oxide (rGO) chip for physical adsorption and subsequent removal of PBDE residues. The detection was based on competitive immunoassay-linked binding between PBDE and PBDE modified with horseradish peroxidase (HRP-PBDE) followed by the monitoring of enzymatic oxidation of o-aminophenol (o-AP) using square wave anodic stripping voltammetry (SW-ASV). PBDE was detected with good sensitivity and a limit of detection similar to that obtained with a commercial colorimetric test (0.018 ppb), but with the advantage of using lower reagent volumes and a reduced analysis time. The use of microfluidic chips also provides improved linearity and a better reproducibility in comparison to those obtained with batch-based measurements using screen-printed electrodes. In order to design a detection system suitable for toxic compounds such as PBDEs, a reduced graphene oxide–PDMS composite was developed and optimized to obtain increased adsorption (based on both the hydrophobicity and π–π stacking between rGO and PBDE molecules) compared to those of non-modified PDMS. To the best of our knowledge, this is the first demonstration of electrochemical detection of flame retardants and a novel application of the rGO-PDMS composite in a biosensing system. This system can be easily applied to detect any analyte using the appropriate immunoassay and it supports operation in complex matrices such as seawater.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Toward integrated detection and graphene-based removal of contaminants in a lab-on-a-chip platform

Show Author's information Andrzej Chałupniak1Arben Merkoçi1,2( )
Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and TechnologyCampus UABBellaterra08193Barcelona, Spain
ICREA, Pg. Lluís Companys 2308010Barcelona, Spain

Abstract

A novel, miniaturized microfluidic platform was developed for the simultaneous detection and removal of polybrominated diphenyl ethers (PBDEs). The platform consists of a polydimethylsiloxane (PDMS) microfluidic chip for an immunoreaction step, a PDMS chip with an integrated screen-printed electrode (SPCE) for detection, and a PDMS-reduced graphene oxide (rGO) chip for physical adsorption and subsequent removal of PBDE residues. The detection was based on competitive immunoassay-linked binding between PBDE and PBDE modified with horseradish peroxidase (HRP-PBDE) followed by the monitoring of enzymatic oxidation of o-aminophenol (o-AP) using square wave anodic stripping voltammetry (SW-ASV). PBDE was detected with good sensitivity and a limit of detection similar to that obtained with a commercial colorimetric test (0.018 ppb), but with the advantage of using lower reagent volumes and a reduced analysis time. The use of microfluidic chips also provides improved linearity and a better reproducibility in comparison to those obtained with batch-based measurements using screen-printed electrodes. In order to design a detection system suitable for toxic compounds such as PBDEs, a reduced graphene oxide–PDMS composite was developed and optimized to obtain increased adsorption (based on both the hydrophobicity and π–π stacking between rGO and PBDE molecules) compared to those of non-modified PDMS. To the best of our knowledge, this is the first demonstration of electrochemical detection of flame retardants and a novel application of the rGO-PDMS composite in a biosensing system. This system can be easily applied to detect any analyte using the appropriate immunoassay and it supports operation in complex matrices such as seawater.

Keywords: graphene oxide, electrochemistry, microfluidics, flame retardants, lab on a chip, polydimethylsiloxane

References(47)

1

Medina-Sánchez, M.; Miserere, S.; Morales-Narváez, E.; Merkoçi, A. On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels. Biosens. Bioelectron. 2014, 54, 279-284.

2

Marasso, S. L.; Giuri, E.; Canavese, G.; Castagna, R.; Quaglio, M.; Ferrante, I.; Perrone, D.; Cocuzza, M. A multilevel lab on chip platform for DNA analysis. Biomed. Microdevices 2011, 13, 19-27.

3

Lee, H. H.; Yager, P. Microfluidic lab-on-a-chip for microbial identification on a DNA microarray. Biotechnol. Bioprocess Eng. 2007, 12, 634-639.

4

Kurbanoglu, S.; Mayorga-Martinez, C. C.; Medina-Sánchez, M.; Rivas, L.; Ozkan, S. A.; Merkoçi, A. Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle-based lab-on-a-chip system. Biosens. Bioelectron. 2015, 67, 670-676.

5

Kimura, H.; Ikeda, T.; Nakayama, H.; Sakai, Y.; Fujii, T. An on-chip small intestine-liver model for pharmacokinetic studies. J. Lab. Autom. 2015, 20, 265-273.

6

Ozhikandathil, J.; Badilescu, S.; Packirisamy, M. Detection of bovine growth hormone using conventional and lab-on-a-chip technologies: A review. Int. J. Adv. Eng. Sci. Appl. Math. 2015, 7, 177-190.

7

Ozhikandathil, J.; Packirisamy, M. Nano-islands integrated evanescence-based lab-on-a-chip on silica-on-silicon and polydimethylsiloxane hybrid platform for detection of recombinant growth hormone. Biomicrofluidics 2012, 6, 46501.

8

Medina-Sánchez, M.; Cadevall, M.; Ros, J.; Merkoçi, A. Eco-friendly electrochemical lab-on-paper for heavy metal detection. Anal. Bioanal. Chem. 2015, 407, 8445-8449.

9

da Costa, E. T.; Santos, M. F. S.; Jiao, H.; do Lago, C. L.; Gutz, I. G. R.; Garcia, C. D. Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides. Electrophoresis 2016, 37, 1691-1695.

10

Ambrosi, A.; Guix, M.; Merkoçi, A. Magnetic and electrokinetic manipulations on a microchip device for bead-based immunosensing applications. Electrophoresis 2011, 32, 861-869.

11

Medina-Sánchez, M.; Miserere, S.; Merkoçi, A. Nanomaterials and lab-on-a-chip technologies. Lab Chip 2012, 12, 1932-1943.

12

Li, S. G.; Xu, Z. G.; Mazzeo, A.; Burns, D. J.; Fu, G.; Dirckx, M.; Shilpiekandula, V.; Chen, X.; Nayak, N. C.; Wong, E. et al. Review of production of microfluidic devices: Material, manufacturing and metrology. In Proceedings of the SPIE 6993, MEMS, MOEMS and Micromachining Ⅲ, Strasbourg, France, 2008.

13

Bhise, N. S.; Manoharan, V.; Massa, S.; Tamayol, A.; Ghaderi, M.; Miscuglio, M.; Lang, Q.; Zhang, Y. S.; Shin, S. R.; Calzone, G. et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 2016, 8, 014101.

14

He, J. K.; Chen, R. M.; Lu, Y. J.; Zhan, L.; Liu, Y. X.; Li, D. C.; Jin, Z. M. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 59, 53-60.

15

Xia, Y. N.; Whitesides, G. M. Soft lithography. Ann. Rev. Mater. Sci. 1998, 28, 153-184.

16

Mayorga-Martinez, C. C.; Hlavata, L.; Miserere, S.; López-Marzo, A.; Labuda, J.; Pons, J.; Merkoçi, A. An integrated phenol "sensoremoval" microfluidic nanostructured platform. Biosens. Bioelectron. 2014, 55, 355-359.

17

Mayorga-Martinez, C. C.; Hlavata, L.; Miserere, S.; López-Marzo, A.; Labuda, J.; Pons, J.; Merkoçi, A. Nanostructured CaCO3-poly(ethyleneimine) microparticles for phenol sensing in fluidic microsystem. Electrophoresis 2013, 34, 2011-2016.

18

Medina-Sánchez, M.; Mayorga-Martinez, C.; Watanabe, T.; Ivandini, T.; Honda, Y.; Pino, F.; Nakata, K.; Fujishima, A.; Einaga, Y.; Merkoçi, A. Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens. Bioelectron. 2016, 75, 365-374.

19

Tan, H. Y.; Loke, W. K.; Nguyen, N. T.; Tan, S. N.; Tay, N. B.; Wang, W.; Ng, S. H. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomed. Microdevices 2014, 16, 269-275.

20

Ibarlucea, B.; Díez-Gil, C.; Ratera, I.; Veciana, J.; Caballero, A.; Zapata, F.; Tárraga, A.; Molina, P.; Demming, S.; Büttgenbach, S. et al. PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions. Analyst 2013, 138, 839-844.

21

Feng, C. Y.; Wei, J. F.; Li, Y. J.; Yang, Y. S.; Wang, Y. H.; Lu, L.; Zheng, G. X. An on-chip pollutant toxicity determination based on marine microalgal swimming inhibition. Analyst 2016, 141, 1761-1771.

22

Zheng, G. X.; Li, Y. J.; Qi, L. L.; Liu, X. M.; Wang, H.; Yu, S. P.; Wang, Y. H. Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment. Mar. Pollut. Bull. 2014, 84, 147-154.

23

Zheng, G. X.; Wang, Y. H.; Wang, Z. M.; Zhong, W. L.; Wang, H.; Li, Y. J. An integrated microfluidic device in marine microalgae culture for toxicity screening application. Mar. Pollut. Bull. 2013, 72, 231-243.

24

Hooper, K.; McDonald, T. A. The PBDEs: An emerging environmental challenge and another reason for breast-milk monitoring programs. Environ. Health Perspect. 2000, 108, 387-392.

25

Andrade, N. A.; McConnell, L. L.; Torrents, A.; Ramirez, M. Persistence of polybrominated diphenyl ethers in agricultural soils after biosolids applications. J. Agric. Food Chem. 2010, 58, 3077-3084.

26

Guo, W. H.; Holden, A.; Smith, S. C.; Gephart, R.; Petreas, M.; Park, J. S. PBDE levels in breast milk are decreasing in California. Chemosphere 2016, 150, 505-513.

27

Ward, J.; Mohapatra, S. P.; Mitchell, A. An overview of policies for managing polybrominated diphenyl ethers (PBDEs) in the Great Lakes Basin. Environ. Int. 2008, 34, 1148-1156.

28

Darnerud, P. O.; Eriksen, G. S.; Jóhannesson, T.; Larsen, P. B.; Viluksela, M. Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology. Environ. Health Perspect. 2001, 109, 49-68.

29

Porterfield, S. P. Vulnerability of the developing brain to thyroid abnormalities: Environmental insults to the thyroid system. Environ. Health Perspect. 1994, 102, 125-130.

30

Ahn, K. C.; Gee, S. J.; Tsai, H. J.; Bennett, D.; Nishioka, M. G.; Blum, A.; Fishman, E.; Hammock, B. D. Immunoassay for monitoring environmental and human exposure to the polybrominated diphenyl ether BDE-47. Environ. Sci. Technol. 2009, 43, 7784-7790.

31

Butryn, D. M.; Gross, M. S.; Chi, L. H.; Schecter, A.; Olson, J. R.; Aga, D. S. "One-shot" analysis of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogs in human breast milk and serum using gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 2015, 892, 140-147.

32

Li, Z.; Li, C.; Lin, D.; Kang, W. J.; Pan, D. Y.; Wu, M. H. GC/MS analysis of polybrominated diphenyl ethers in vegetables collected from Shanghai, China. In Proceedings of the 2013 International Conference on Material Science and Environmental Engineering (MSEE 2013), 2013, pp 292-296.

33

Liu, Q.; Shi, J. B.; Sun, J. T.; Wang, T.; Zeng, L. X.; Zhu, N. L.; Jiang, G. B. Graphene-assisted matrix solid-phase dispersion for extraction of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogs from environmental samples. Anal. Chim. Acta 2011, 708, 61-68.

34

Zhang, H.; Lee, H. K. Plunger-in-needle solid-phase microextraction with graphene-based sol-gel coating as sorbent for determination of polybrominated diphenyl ethers. J. Chromatogr. A 2011, 1218, 4509-4516.

35

Orozco, J.; Mercante, L. A.; Pol, R.; Merkoç, A. Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 2016, 4, 3371-3378.

36

Chen, M. T.; Tao, T.; Zhang, L.; Gao, W.; Li, C. Z. Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chem. Commun. 2013, 49, 1612-1614.

37

Shahzad, M. I.; Giorcelli, M.; Shahzad, N.; Guastella, S.; Castellino, M.; Jagdale, P.; Tagliaferro, A. Study of carbon nanotubes based polydimethylsiloxane composite films. In Proceedings of the 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6), Islamabad, Pakistan, 2013.

38

Lee, A. C.; Liu, G. D.; Heng, C. K.; Tan, S. N.; Lim, T. M.; Lin, Y. H. Sensitive electrochemical detection of horseradish peroxidase at disposable screen-printed carbon electrode. Electroanalysis 2008, 20, 2040-2046.

39

Medina-Sánchez, M.; Miserere, S.; Marín, S.; Aragay, G.; Merkoçi, A. On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes. Lab Chip 2012, 12, 2000-2005.

40

Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112-1114.

41

Nourani, S.; Ghourchian, H.; Boutorabi, S. M. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Anal. Biochem. 2013, 441, 1-7.

42

Xu, R. Q.; Lu, Y. Q.; Jiang, C. H.; Chen, J.; Mao, P.; Gao, G. H.; Zhang, L. B.; Wu, S. Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor. ACS Appl. Mater. Interfaces 2014, 6, 13455-13460.

43

Ju, T.; Ge, W.; Jiang, T.; Chai, C. Polybrominated diphenyl ethers in dissolved and suspended phases of seawater and in surface sediment from Jiaozhou Bay, North China. Sci. Total Environ. 2016, 557-558, 571-578.

44

Lammel, G.; Audy, O.; Besis, A.; Efstathiou, C.; Eleftheriadis, K.; Kohoutek, J.; Kukučka, P.; Mulder, M. D.; Přibylová, P.; Prokeš, R. et al. Air and seawater pollution and air-sea gas exchange of persistent toxic substances in the Aegean Sea: Spatial trends of PAHs, PCBs, OCPs and PBDEs. Environ. Sci. Pollut. Res. 2015, 22, 11301-11313.

45

Cristale, J.; Hurtado, A.; Gómez-Canela, C.; Lacorte, S. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain. Environ. Res. 2016, 149, 66-76.

46

Xu, D.; Zhu, W.; Wang, C.; Tian, T.; Li, J.; Lan, Y.; Zhang, G. X.; Zhang, D. Q.; Li, G. T. Label-free detection and discrimination of poly-brominated diphenylethers using molecularly imprinted photonic cross-reactive sensor arrays. Chem. Commun. 2014, 50, 14133-14136.

47

Radhakrishnan, R.; Suni, I. I.; Bever, C. S.; Hammock, B. D. Impedance biosensors: Applications to sustainability and remaining technical challenges. ACS Sustainable Chem. Eng. 2014, 2, 1649-1655.

File
nr-10-7-2296_ESM.pdf (927.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2016
Revised: 08 December 2016
Accepted: 14 December 2016
Published: 01 March 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge FP7 EU Project "SMS" (No. 613844). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, No. SEV-2013-0295) and Secretaria d'Universitats i Recerca del Departament d′Economia i Coneixement de la Generalitat de Catalunya (2014 SGR 260). The authors would also like to thank Dr. Mariana Medina Sánchez for microfluidic mold fabrication that was employed in GO-CHIP development.

Return