Journal Home > Volume 10 , Issue 7

Enhanced cellular uptake efficiency of nanoparticles is important for their biomedical applications, including photothermal therapy (PTT) for cancer. In this study, a one-pot method was used to construct a positively charged and magnet-responsive nanocomposite comprising reduced graphene oxide anchoring iron oxide (RGI) with a polyethylenimine (PEI) modification, to improve the efficiency of cell internalization. The surface charge can be finely tuned using PEIs of different molecular weights. The obtained RGI1.8k composite (RGI modified by 1.8 kDa PEI) could load indocyanine green (ICG) at a high mass ratio of 10:3 and ablate cancer cells using low-density laser irradiation because of its positively charged surface. In addition, the hybrids of RGI1.8k and ICG could kill most cancer cells at a laser density of 0.7 W/cm2 in vitro and 0.3 W/cm2 in vivo. At the same time, cell viability could be controlled by converting the external magnetic-field direction because of the enrichment of the magnet-responsive composite in vitro and in vivo. Furthermore, RGI1.8k-ICGs could be used as T2-weighted magnetic resonance and infrared thermal imaging agents. Coupled with the magnetic target effect, the imaging signal could be improved significantly. Therefore, RGI1.8k-ICGs represent a new highly efficient PTT and imaging agent with great potential for cancer treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy

Show Author's information Baoji Du1,2Jianhua Liu3,6Guanyu Ding1Xu Han1Dan Li1( )Erkang Wang1( )Jin Wang1,4,5( )
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
University of Chinese Academy of SciencesBeijing100039China
Department of Radiologythe Second Hospital of Jilin UniversityChangchun130041China
College of PhysicsJilin UniversityChangchun130012China
Department of Chemistry and Physics, State University of New York at Stony BrookNY11794-3400USA
State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China

Abstract

Enhanced cellular uptake efficiency of nanoparticles is important for their biomedical applications, including photothermal therapy (PTT) for cancer. In this study, a one-pot method was used to construct a positively charged and magnet-responsive nanocomposite comprising reduced graphene oxide anchoring iron oxide (RGI) with a polyethylenimine (PEI) modification, to improve the efficiency of cell internalization. The surface charge can be finely tuned using PEIs of different molecular weights. The obtained RGI1.8k composite (RGI modified by 1.8 kDa PEI) could load indocyanine green (ICG) at a high mass ratio of 10:3 and ablate cancer cells using low-density laser irradiation because of its positively charged surface. In addition, the hybrids of RGI1.8k and ICG could kill most cancer cells at a laser density of 0.7 W/cm2 in vitro and 0.3 W/cm2 in vivo. At the same time, cell viability could be controlled by converting the external magnetic-field direction because of the enrichment of the magnet-responsive composite in vitro and in vivo. Furthermore, RGI1.8k-ICGs could be used as T2-weighted magnetic resonance and infrared thermal imaging agents. Coupled with the magnetic target effect, the imaging signal could be improved significantly. Therefore, RGI1.8k-ICGs represent a new highly efficient PTT and imaging agent with great potential for cancer treatment.

Keywords: magnetic resonance imaging, drug delivery, photothermal therapy, surface charge, synergistic therapy, low laser density

References(48)

1

Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669-11717.

2

Cui, W.; Li, J. B.; Decher, G. Self-assembled smart nanocarriers for targeted drug delivery. Adv. Mater. 2016, 28, 1302-1311.

3

Du, B. J.; Tian, L.; Gu, X. X.; Li, D.; Wang, E. K.; Wang, J. Anionic lipid, pH-sensitive liposome-gold nanoparticle hybrids for gene delivery—Quantitative research of the mechanism. Small 2015, 11, 2333-2340.

4

Mikhaylov, G.; Mikac, U.; Magaeva, A. A.; Itin, V. I.; Naiden, E. P.; Psakhye, I.; Babes, L.; Reinheckel, T.; Peters, C.; Zeiser, R. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 2011, 6, 594-602.

5

Wang, C. S.; Li, J. Y.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. M. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem., Int. Ed. 2011, 50, 11644-11648.

6

Zhang, K.; Hao, L. L.; Hurst, S. J.; Mirkin, C. A. Antibody-linked spherical nucleic acids for cellular targeting. J. Am. Chem. Soc. 2012, 134, 16488-16491.

7

Nguyen, K. T.; Zhao, Y. L. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc. Chem. Res. 2015, 48, 3016-3025.

8

Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318-3323.

9

Yuan, H.; Fales, A. M.; Vo-Dinh, T. Tat peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358-11361.

10

Wang, S. J.; Huang, P.; Nie, L. M.; Xing, R. J.; Liu, D. B.; Wang, Z.; Lin, J.; Chen, S. H.; Niu, G.; Lu, G. M. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055-3061.

11

Yildirimer, L.; Thanh, N. T. K.; Loizidou, M.; Seifalian, A. M. Toxicology and clinical potential of nanoparticles. Nano Today 2011, 6, 585-607.

12

Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150-3158.

13

Chandrasekaran, R.; Lee, A. S. W.; Yap, L. W.; Jans, D. A.; Wagstaff, K. M.; Cheng, W. L. Tumor cell-specific photothermal killing by selex-derived DNA aptamer-targeted gold nanorods. Nanoscale 2016, 8, 187-196.

14

Jiang, Y.; Huo, S. D.; Mizuhara, T.; Das, R.; Lee, Y. W.; Hou, S.; Moyano, D. F.; Duncan, B.; Liang, X. J.; Rotello, V. M. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano 2015, 9, 9986-9993.

15

Shen, H.; Zhang, L. M.; Liu, M.; Zhang, Z. J. Biomedical applications of graphene. Theranostics 2012, 2, 283-294.

16

Wang, Y.; Li, Z. H.; Hu, D. H.; Lin, C. T.; Li, J. H.; Lin, Y. H. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 2010, 132, 9274-9276.

17

Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24, 1868-1872.

18

Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33, 2206-2214.

19

Hudson, D. E.; Hudson, D. O.; Wininger, J. M.; Richardson, B. D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 2013, 31, 163-168.

20

Bao, T.; Yin, W. Y.; Zheng, X. P.; Zhang, X.; Yu, J.; Dong, X. H.; Yong, Y.; Gao, F. P.; Yan, L.; Gu, Z. J. et al. One-pot synthesis of PEGylated plasmonic MoO3-x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials 2016, 76, 11-24.

21

Zhang, R. R.; Su, S. S.; Hu, K. L.; Shao, L. H.; Deng, X. W.; Sheng, W.; Wu, Y. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy. Nanoscale 2015, 7, 19722-19731.

22

Chung, U. S.; Kim, J. H.; Kim, B.; Kim, E.; Jang, W. D.; Koh, W. G. Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy. Chem. Commun. 2016, 52, 1258-1261.

23

Park, H.; Park, W.; Na, K. Doxorubicin loaded singlet-oxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer. Biomaterials 2014, 35, 7963-7969.

24

Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-6933.

25

Yu, J.; Yin, W. Y.; Zheng, X. P.; Tian, G.; Zhang, X.; Bao, T.; Dong, X. H.; Wang, Z. L.; Gu, Z. J.; Ma, X. Y. et al. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 2015, 5, 931-945.

26

Jiang, S.; Eltoukhy, A. A.; Love, K. T.; Langer, R.; Anderson, D. G. Lipidoid-coated iron oxide nanoparticles for efficient DNA and sirna delivery. Nano Lett. 2013, 13, 1059-1064.

27

Liang, C.; Song, X. J.; Chen, Q.; Liu, T.; Song, G. S.; Peng, R.; Liu, Z. Magnetic field-enhanced photothermal ablation of tumor sentinel lymph nodes to inhibit cancer metastasis. Small 2015, 11, 4856-4863.

28

Sun, H. M.; Cao, L. Y.; Lu, L. H. Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011, 4, 550-562.

29

Yang, X.; Chen, C. L.; Li, J. X.; Zhao, G. X.; Ren, X. M.; Wang, X. K. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012, 2, 8821-8826.

30

Peng, E. W.; Choo, E. S. G.; Chandrasekharan, P.; Yang, C. T.; Ding, J.; Chuang, K. H.; Xue, J. M. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 2012, 8, 3620-3630.

31

Wang, H. -X.; Zuo, Z. -Q.; Du, J. -Z.; Wang, Y. -C.; Sun, R.; Cao, Z. -T.; Ye, X. -D.; Wang, J. -L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133-144.

32

Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

33

Chen, Y.; Song, B. H.; Lu, L.; Xue, J. M. Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Nanoscale 2013, 5, 6797-6803.

34

Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825-6831.

35

Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; Jin, Q.; Ren, K. F.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 2013, 7, 6244-6257.

36

Liu, J. B.; Fu, S. H.; Yuan, B.; Li, Y. L.; Deng, Z. X. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 2010, 132, 7279-7281.

37

Feng, L. Z.; Yang, X. Z.; Shi, X. Z.; Tan, X. F.; Peng, R.; Wang, J.; Liu, Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 2013, 9, 1989-1997.

38

Wang, L.; Liu, J. H.; Dai, Y. L.; Yang, Q.; Zhang, Y. X.; Yang, P. P.; Cheng, Z. Y.; Lian, H. Z.; Li, C. X.; Hou, Z. Y. et al. Efficient gene delivery and multimodal imaging by lanthanide-based upconversion nanoparticles. Langmuir 2014, 30, 13042-13051.

39

Xiao, L. S.; Li, J. T.; Brougham, D. F.; Fox, E. K.; Feliu, N.; Bushmelev, A.; Schmidt, A.; Mertens, N.; Kiessling, F.; Valldor, M. et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 2011, 5, 6315-6324.

40

Lv, Z. Z.; Yang, X.; Wang, E. K. Highly concentrated polycations-functionalized graphene nanosheets with excellent solubility and stability, and its fast, facile and controllable assembly of multiple nanoparticles. Nanoscale 2013, 5, 663-670.

41

Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010, 6, 537-544.

42

Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X. S.; Zhang, C. L.; Zhou, X. J.; Guo, S. W.; Cui, D. X. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1, 240-250.

43

Kim, S.; Ryoo, S. R.; Na, H. K.; Kim, Y. K.; Choi, B. S.; Lee, Y.; Kim, D. E.; Min, D. H. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem. Commun. 2013, 49, 8241-8243.

44

Ma, Y.; Tong, S.; Bao, G.; Gao, C.; Dai, Z. F. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 2013, 34, 7706-7714.

45

Deng, K. R.; Hou, Z. Y.; Deng, X. R.; Yang, P. P.; Li, C. X.; Lin, J. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 2015, 25, 7280-7290.

46

Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353-1359.

47

Habash, R. W. Y.; Bansal, R.; Krewski, D.; Alhafid, H. T. Thermal therapy, part 1: An introduction to thermal therapy. Crit. Rev. Biomed. Eng. 2006, 34, 459-489.

48

Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136-151.

File
nr-10-7-2280_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 September 2016
Revised: 10 December 2016
Accepted: 12 December 2016
Published: 20 April 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 31301177, 21427811, and 91430217), and MOST China (No. 2013YQ170585). J. W. also appreciated NSF.

Return