Journal Home > Volume 10 , Issue 7

Hybrid organic–inorganic perovskites have been demonstrated as promising candidates for broadband-responsive photodetectors. It is critical to develop perovskite-based photodetectors with excellent photodetection capability and facile fabrication processes for practical application. Herein, we designed and fabricated, for the first time, a hybrid photodetector consisting of electrospun ZnO nanofibers and perovskites. Compared to pristine ZnO or perovskite, the hybrid photodetector showed increased on–off ratio, faster response speed, and higher responsivity and detectivity. The performance of the hybrid devices was significantly enhanced by using quasi-aligned ZnO nanofiber arrays instead of disordered nanofibers, which provide efficient charge transfer between the perovskite and ZnO, shorter transmission paths, and reduced carrier loss at cross-junctions of nanofibers. Our results provide a new and promising route to integrate inorganic functional materials with perovskite for high-performance and low-cost photodetectors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures

Show Author's information Fengren Cao§Wei Tian§Bangkai GuYulong MaHao LuLiang Li( )
College of PhysicsOptoelectronics and EnergyCollaborative Innovation Center of Suzhou Nano Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006China

§ These authors contributed equally to this work.

Abstract

Hybrid organic–inorganic perovskites have been demonstrated as promising candidates for broadband-responsive photodetectors. It is critical to develop perovskite-based photodetectors with excellent photodetection capability and facile fabrication processes for practical application. Herein, we designed and fabricated, for the first time, a hybrid photodetector consisting of electrospun ZnO nanofibers and perovskites. Compared to pristine ZnO or perovskite, the hybrid photodetector showed increased on–off ratio, faster response speed, and higher responsivity and detectivity. The performance of the hybrid devices was significantly enhanced by using quasi-aligned ZnO nanofiber arrays instead of disordered nanofibers, which provide efficient charge transfer between the perovskite and ZnO, shorter transmission paths, and reduced carrier loss at cross-junctions of nanofibers. Our results provide a new and promising route to integrate inorganic functional materials with perovskite for high-performance and low-cost photodetectors.

Keywords: perovskite, electrospinning, ZnO, hybrid, photodetector

References(58)

1

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

2

Liao, Q. L.; Liang, M. Y.; Zhang, Z.; Zhang, G. J.; Zhang, Y. Strain-modulation and service behavior of Au-MgO-ZnO ultraviolet photodetector by piezo-phototronic effect. Nano Res. 2015, 8, 3772-3779.

3

Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403-433.

4

Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775-783.

5

Deng, K. M.; Li, L. CdS nanoscale photodetectors. Adv. Mater. 2014, 26, 2619-2635.

6

Xiong, X.; Zhang, Q.; Gan, L.; Zhou, X.; Xing, X. N.; Li, H. Q.; Zhai, T. Y. Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition. Nano Res. 2016, 9, 3848-3857.

7

Li, L.; Fang, X. S.; Zhai, T. Y.; Liao, M. Y.; Gautam, U. K.; Wu, X. C.; Koide, Y.; Bando, Y.; Golberg, D. Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts. Adv. Mater. 2010, 22, 4151-4156.

8

Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655-689.

9

Dou, L. T.; Yang, Y.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

10

Sutherland, B. R.; Jognston, A. K.; Ip, A. H.; Xu, J. X.; Adinolfi, V.; Kanjanaboos, P.; Sargent, E. H. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics 2015, 2, 1117-1123.

11

Chen, J. N.; Zhou, S. S.; Jin, S. Y.; Li, H. Q.; Zhai, T. Y. Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 2016, 4, 11-27.

12

Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201-2208.

13

Saidaminov, M. I.; Adinolfi, V.; Comin, R.; Abdelhady, A. L.; Peng, W.; Dursun, I.; Yuan, M. J.; Hoogland, S.; Sargent, E. H.; Bakr, O. M. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 8724.

14

Saidaminov, M. I.; Haque, M. Z.; Savoie, M.; Abdelhady, A. L.; Cho, N.; Dursun, I.; Buttner, U.; Alarousu, E.; Wu, T.; Bakr, O. M. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 2016, 28, 8144-8149.

15

Lu, H.; Tian, W.; Cao, F. R.; Ma, Y. L.; Gu, B. K.; Li, L. A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater. 2016, 26, 1296-1302.

16

Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373-7380.

17

Zhou, J. C.; Chu, Y. L.; Huang, J. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl. Mater. Interfaces 2016, 8, 25660-25666.

18

Wang, F.; Mei, J. J.; Wang, Y. P.; Zhang, L. G.; Zhao, H. F.; Zhao, D. X. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 2840-2846.

19

Lee, Y. B.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41-46.

20

Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683-3689.

21

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

22

Vlassiouk, I.; Regmi, M.; Fulvio, P. F.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069-6076.

23

Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.

24

Jin, Z. W.; He, D.; Zhou, Q.; Mao, P.; Ding, L. M.; Wang, J. Z. Bilayer heterostructured PThTPTI/WS2 photodetectors with high thermal stability in ambient environment. ACS Appl. Mater. Interfaces 2016, 8, 33043-33050.

25

Song, H. J.; Lv, D.; Wang, J. B.; Li, B.; Zhong, X. L.; Jia, L. H.; Wang, F. Multi-channel ferroelectric-gate field effect transistors with excellent performance based on ZnO nanofibers. RSC Adv. 2014, 4, 54924-54927.

26

Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649-1653.

27

Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158-160.

DOI
28

Djurišić, A. B.; Ng, A. M. C.; Chen, X. Y. ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quant. Electron. 2010, 34, 191-259.

29

Yang, Y.; Guo, W.; Qi, J. J.; Zhao, J.; Zhang, Y. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett. 2010, 97, 223113.

30

Zhou, J.; Gu, Y. D.; Hu, Y. F.; Mai, W. J.; Yeh, P. H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103.

31

Tian, W.; Lu, H.; Li, L. Nanoscale ultraviolet photodetectors based on one dimensional metal oxide nanostructures. Nano Res. 2015, 8, 382-405.

32

Jin, Z. W.; Wang, J. Z. Flexible high-performance ultraviolet photoconductor with zinc oxide nanorods and 8-hydroxyquinoline. J. Mater. Chem. C 2014, 2, 1966-1970.

33

Jin, Z. W.; Gao, L.; Zhou, Q.; Wang, J. Z. High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films. Sci. Rep. 2014, 4, 4268.

34

Jin, Z. W.; Zhou, Q.; Chen, Y. H.; Mao, P.; Li, H.; Liu, H. B.; Wang, J. Z.; Li, Y. L. Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater. 2016, 28, 3697-3702.

35

Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4407.

36

Manekkathodi, A.; Lu, M. Y.; Wang, C. W.; Chen, L. J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059-4063.

37

Chang, P. C.; Fan, Z. Y.; Wang, D. W.; Tseng, W. Y.; Chiou, W. A.; Hong, J.; Lu, J. G. ZnO nanowires synthesized by vapor trapping CVD method. Chem. Mater. 2004, 16, 5133-5137.

38

Wu, H.; Pan, W. Preparation of zinc oxide nanofibers by electrospinning. J. Am. Ceram. Soc. 2006, 89, 699-701.

39

Chong, H. N.; Wei, G. D.; Hou, H. L.; Yang, H. J.; Shang, M. H.; Gao, F. M.; Yang, W. Y.; Shen, G. Z. High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires. Nano Res. 2015, 8, 2822-2832.

40

Zheng, Z.; Gan, L.; Li, H. Q.; Ma, Y.; Bando, Y.; Golberg, D.; Zhai, T. Y. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays. Adv. Funct. Mater. 2015, 25, 5885-5894.

41

Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 2007, 17, 1795-1800.

42

Zhou, X.; Zhang, Q.; Gan, L.; Li, X.; Li, H. Q.; Zhang, Y.; Golberg, D.; Zhai, T. Y. High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 2016, 26, 704-712.

43

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649-1654.

44

Guo, Y. L.; Liu, C.; Tanaka, H.; Nakamura, E. Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light. J. Phys. Chem. Lett. 2015, 6, 535-539.

45

Liu, C.; Wang, K.; Yi, C.; Shi, C. J.; Du, P. C.; Smith, A. W.; Karim, A.; Gong, X. Ultrasensitive solution-processed perovskite hybrid photodetectors. J. Mater. Chem. C 2015, 3, 6600-6606.

46

Liu, Y. C.; Sun, J. K.; Yang, Z.; Yang, D.; Ren, X. D.; Xu, H.; Yang, Z. P.; Liu, S. Z. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829-1837.

47

Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Bakr, O. M. CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 2015, 6, 3781-3786.

48

Adinolfi, V.; Ouellette, O.; Saidaminov, M. I.; Walters, G.; Abdelhady, A. L.; Bakr, O. M.; Sargent, E. H. Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv. Mater. 2016, 28, 7264-7268.

49

Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713-9721.

50

Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067-2070.

51

Li, X. M.; Yu, D. J.; Cao, F.; Gu, Y.; Wei, Y.; Wu, Y.; Song, J. Z.; Zeng, H. B. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater. 2016, 26, 5903-5912.

52

Dong, Y. H.; Gu, Y.; Zou, Y. S.; Song, J. Z.; Xu, L. M.; Li, J. H., Xue, J.; Li, X. M.; Zeng, H. B. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 2016, 12, 5622-5632.

53

Deng, H.; Yang, X. K.; Dong, D. D.; Li, B.; Yang, D.; Yuan, S. J.; Qiao, K. K.; Cheng, Y. B.; Tang, J.; Song, H. S. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 2015, 15, 7963-7969.

54

Dong, R.; Fnag, Y. J.; Chae, J.; Dai, J.; Xiao, Z. G.; Dong, Q. F.; Yuan, Y. B.; Centrone, A.; Zeng, X. C.; Huang, J. S. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 2015, 27, 1912-1918.

55

He, M. H.; Chen, Y. N.; Liu, H.; Wang, J. L.; Fang, X. S.; Liang, Z. Q. Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications. Chem. Commun. 2015, 51, 9659-9661.

56

Lu, J. P.; Carvalho, A.; Liu, H. W.; Lim, S. X.; Neto, A. H. C.; Sow, C. H. Hybrid bilayer WSe2-CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector. Angew. Chem., Int. Ed. 2016, 128, 12124-12128.

57

Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799-7806.

58

Chen, S.; Teng, C. J.; Zhang, M.; Li, Y. R.; Xie, D.; Shi, G. Q. A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite. Adv. Mater. 2016, 28, 5969-5974.

File
nr-10-7-2244_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 November 2016
Revised: 08 December 2016
Accepted: 10 December 2016
Published: 27 March 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Nos. 51422206, 51372159, and 51502184), 1000 Youth Talents Plan, 333 High-level Talents Cultivation Project of Jiangsu Province, Six Talents Peak Project of Jiangsu Province, Distinguished Young Scholars Foundation by Jiangsu Science and Technology Committee (No. BK20140009), Natural Science Foundation of Jiangsu Province (No. BK20150331), and Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return