Journal Home > Volume 10 , Issue 7

A single water molecule is nothing special. However, macroscopic water displays many anomalous properties at interfaces, such as hydrophobicity and hydrophilicity. Although the underlying mechanisms remain elusive, hydrogen bonds between water molecules are expected to play a major role in these interesting phenomena. An important question concerns whether water clusters containing few molecules are qualitatively different from a single molecule. Using the water adsorption behavior as an example and by carefully choosing two-dimensional silicene as the substrate material, we demonstrate that water monomers, dimers, and trimers show distinct adsorption properties at the substrate surface. On silicene, the additional water molecules in dimers and trimers induce a transition from physisorption to chemisorption and then to dissociation, arising from the enhancement of charge transfer and proton transfer processes induced by hydrogen bonding. Such a hydrogen bond autocatalytic effect is expected to have broad applications in metal-free catalysis for the oxygen reduction reaction and water dissociation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water on silicene: A hydrogen bond-autocatalyzed physisorption–chemisorption–dissociation transition

Show Author's information Wei Hu1,2( )Zhenyu Li1Jinlong Yang1( )
Hefei National Laboratory for Physical Sciences at MicroscaleDepartment of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefei230026China
Computational Research DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720USA

Abstract

A single water molecule is nothing special. However, macroscopic water displays many anomalous properties at interfaces, such as hydrophobicity and hydrophilicity. Although the underlying mechanisms remain elusive, hydrogen bonds between water molecules are expected to play a major role in these interesting phenomena. An important question concerns whether water clusters containing few molecules are qualitatively different from a single molecule. Using the water adsorption behavior as an example and by carefully choosing two-dimensional silicene as the substrate material, we demonstrate that water monomers, dimers, and trimers show distinct adsorption properties at the substrate surface. On silicene, the additional water molecules in dimers and trimers induce a transition from physisorption to chemisorption and then to dissociation, arising from the enhancement of charge transfer and proton transfer processes induced by hydrogen bonding. Such a hydrogen bond autocatalytic effect is expected to have broad applications in metal-free catalysis for the oxygen reduction reaction and water dissociation.

Keywords: density functional theory, silicene, dissociation, chemisorption, physisorption, hydrogen bond

References(94)

1

Thiel, P. A.; Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 1987, 7, 211-385.

2

Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1-308.

3

Verdaguer, A.; Sacha, G. M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478-1510.

4

Somasundaran, P.; Fuerstenau, D. W. Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J. Phys. Chem. 1966, 70, 90-96.

5

Hass, K. C.; Schneider, W. F.; Curioni, A.; Andreoni, W. The chemistry of water on alumina surfaces: Reaction dynamics from first principles. Science 1998, 282, 265-268.

6

Zhang, L. N.; Tian, C. S.; Waychunas, G. A.; Shen, Y. R. Structures and charging of α-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy. J. Am. Chem. Soc. 2008, 130, 7686-7694.

7

Michaelides, A.; Hu, P. Catalytic water formation on platinum: A first-principles study. J. Am. Chem. Soc. 2001, 123, 4235-4242.

8

Ogasawara, H.; Brena, B.; Nordlund, D.; Nyberg, M.; Pelmenschikov, A.; Pettersson, L. G. M.; Nilsson, A. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 2002, 89, 276102.

9

Michaelides, A.; Ranea, V. A.; de Andres, P. L.; King, D. A. General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys. Rev. Lett. 2003, 90, 216102.

10

McCarthy, M. I.; Schenter, G. K.; Scamehorn, C. A.; Nicholas, J. B. Structure and dynamics of the water/MgO interface. J. Phys. Chem. 1996, 100, 16989-16995.

11

Giordano, L.; Goniakowski, J.; Suzanne, J. Partial dissociation of water molecules in the (3×2) water monolayer deposited on the MgO (100) surface. Phys. Rev. Lett. 1998, 81, 1271.

12

Shin, H. -J.; Jung, J.; Motobayashi, K.; Yanagisawa, S.; Morikawa, Y.; Kim, Y.; Kawai, M. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nat. Mater. 2010, 9, 442-447.

13

Brookes, I. M.; Muryn, C. A.; Thornton, G. Imaging water dissociation on TiO2 (110). Phys. Rev. Lett. 2001, 87, 266103.

14

Schaub, R.; Thostrup, P.; Lopez, N.; Lgsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Besenbacher, F. Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys. Rev. Lett. 2001, 87, 266104.

15

Onda, K.; Li, B.; Zhao, J.; Jordan, K. D.; Yang, J. L.; Petek, H. Wet electrons at the H2O/TiO2 (110) surface. Science 2005, 308, 1154-1158.

16

Shiotari, A.; Hatta, S.; Okuyama, H.; Aruga, T. Role of hydrogen bonding in the catalytic reduction of nitric oxide. Chem. Sci. 2014, 5, 922-926.

17

Yang, W. S.; Wei, D.; Jin, X. C.; Xu, C. B.; Geng, Z. H.; Guo, Q.; Ma, Z. B.; Dai, D. X.; Fan, H. J.; Yang, X. M. Effect of the hydrogen bond in photoinduced water dissociation: A double-edged sword. J. Phys. Chem. Lett. 2016, 7, 603-608.

18

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.

19

Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210-228.

20

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

21

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.

22

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

23

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

24

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109.

25

Guzmán-Verri, G. G.; Voon, L. C. L. Y. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131

26

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

27

Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

28

Kara, A.; Enriquez, H.; Seitsonend, A. P.; Voone, L. C. L. Y.; Vizzini, S.; Aufrayg, B.; Oughaddoub, H. A review on silicene—New candidate for electronics. Surf. Sci. Rep. 2012, 67, 1-18.

29

Ornes, S. Core concept: Silicene. Proc. Natl. Acad. Sci. USA 2014, 111, 10899.

30

Grazianetti, C.; Cinquanta, E.; Molle, A. Two-dimensional silicon: The advent of silicene. 2D Mater. 2016, 3, 012001.

31

Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414-4421.

32

Li, L. F.; Lu, S. -Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. -Q.; Wang, Y. L.; Cao, C. -Y.; Du, S. X.; Gao, H. -J. Buckled germanene formation on Pt (111). Adv. Mater. 2014, 26, 4820-4824.

33

Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.

34

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

35

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.

36

Qiao, J. S.; Kong, X. H.; Hu, Z. -X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

37

Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404-409.

38

Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209-3215.

39

Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. -Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134-4139.

40

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

41

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

42

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

43

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.

44

Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnálek, Z.; Kay, B. D. No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 2009, 131, 12838-12844.

45

Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gullapalli, H.; Borca-Tasciuc, T.; Ajayan, P. M.; Koratkar, N. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 2010, 6, 2535-2538.

46

Qu, L. T.; Liu, Y.; Baek, J. -B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.

47

Cao, P. G.; Varghese, J. O.; Xu, K.; Heath, J. R. Visualizing local doping effects of individual water clusters on gold(111)-supported graphene. Nano Lett. 2012, 12, 1459-1463.

48

Feng, X.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662-5668.

49

Kostov, M. K.; Santiso, E. E.; George, A. M.; Gubbins, K. E.; Nardelli, M. B. Dissociation of water on defective carbon substrates. Phys. Rev. Lett. 2005, 95, 136105.

50

Ribeiro, R. M.; Peres, N. M. R.; Coutinho, J.; Briddon, P. R. Inducing energy gaps in monolayer and bilayer graphene: Local density approximation calculations. Phys. Rev. B 2008, 78, 075442.

51

Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

52

Leenaerts, O.; Partoens, B.; Peeters, F. M. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys. Rev. B 2009, 79, 235440.

53

Sanyal, B.; Eriksson, O.; Jansson, U.; Grennberg, H. Molecular adsorption in graphene with divacancy defects. Phys. Rev. B 2009, 79, 113409.

54

Li, X.; Feng, J.; Wang, E. G.; Meng, S.; Klimes, J.; Michaelides, A. Influence of water on the electronic structure of metal-supported graphene: Insights from van der Waals density functional theory. Phys. Rev. B 2012, 85, 085425.

55

Miao, X. C.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745-2750.

56

Hu, W.; Li, Z. Y.; Yang, J. L. Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite. J. Chem. Phys. 2013, 139, 154704.

57

Drummond, N. D.; Zólyomi, V.; Fal'ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423.

58

Wang, X. -Q.; Li, H. -D.; Wang, J. -T. Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys. Chem. Chem. Phys. 2012, 14, 3031-3036.

59

Liu, C. -C.; Feng, W. X.; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

60

Xu, C. Y.; Luo, G. F.; Liu, Q. H.; Zheng, J. X.; Zhang, Z. M.; Nagase, S.; Gao, Z. X.; Lu, J. Giant magnetoresistance in silicene nanoribbons. Nanoscale 2012, 4, 3111-3117.

61

Chen, L.; Feng, B. J.; Wu, K. H. Observation of a possible superconducting gap in silicene on Ag (111) surface. Appl. Phys. Lett. 2013, 102, 081602.

62

Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.

63

Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 2012, 12, 3507-3511.

64

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

65

Chen, L.; Liu, C. -C.; Feng, B. J.; He, X. Y.; Cheng, P.; Ding, Z. J.; Meng, S.; Yao, Y. G.; Wu, K. H. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 2012, 109, 056804.

66

Chen, L.; Li, H.; Feng, B. J.; Ding, Z. J.; Qiu, J. L.; Cheng, P.; Wu, K. H.; Meng, S. Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys. Rev. Lett. 2013, 110, 085504.

67

Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir (111). Nano Lett. 2013, 13, 685-690.

68

Lin, X. Q.; Ni, J. Much stronger binding of metal adatoms to silicene than to graphene: A first-principles study. Phys. Rev. B 2012, 86, 075440.

69

Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F. M. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Phys. Rev. B 2013, 87, 085444.

70

Sahin, H.; Peeters, F. M. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 2013, 87, 085423.

71

Tritsaris, G. A.; Kaxiras, E.; Meng, S.; Wang, E. G. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013, 13, 2258-2263.

72

Wang, J.; Li, J. B.; Li, S. -S.; Liu, Y. Hydrogen storage by metalized silicene and silicane. J. Appl. Phys. 2013, 114, 124309.

73

Li, C.; Yang, S. X.; Li, S. -S.; Xia, J. -B.; Li, J. B. Au-decorated silicene: Design of a high-activity catalyst toward CO oxidation. J. Phys. Chem. C 2013, 117, 483-488.

74

Huang, B.; Xiang, H. J.; Wei, S. -H. Chemical functionalization of silicene: Spontaneous structural transition and exotic electronic properties. Phys. Rev. Lett. 2013, 111, 145502.

75

Özçelik, V. O.; Ciraci, S. Local reconstructions of silicene induced by adatoms. J. Phys. Chem. C 2013, 117, 26305-26315.

76

Hu, W.; Wu, X. J.; Li, Z. Y.; Yang, J. L. Porous silicene as a hydrogen purification membrane. Phys. Chem. Chem. Phys. 2013, 15, 5753-5757.

77

Hu, W.; Wu, X. J.; Li, Z. Y.; Yang, J. L. Helium separation via porous silicene based ultimate membrane. Nanoscale 2013, 5, 9062-9066.

78

Hu, W.; Xia, N.; Wu, X.; Li, Z.; Yang, J. Silicene as a highly sensitive molecule sensor for NH3, NO and NO2. Phys. Chem. Chem. Phys. 2014, 16, 6957-6962.

79

Feng, J. W.; Liu, Y. J.; Wang, H. X.; Zhao, J. X.; Cai, Q. H.; Wang, X. Z. Gas adsorption on silicene: A theoretical study. Comp. Mater. Sci. 2014, 87, 218-226.

80

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

81

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

82

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

83

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

84

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36, 354-360.

85

Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511.

86

Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695-1697.

87

Baskin, Y.; Mayer, L. Lattice constants of graphite at low temperatures. Phys. Rev. 1955, 100, 544.

88

Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.

89

Mapasha, R. E.; Ukpong, A. M.; Chetty, N. Ab initio studies of hydrogen adatoms on bilayer graphene. Phys. Rev. B 2012, 85, 205402.

90

Hu, W.; Li, Z. Y.; Yang, J. L. Diamond as an inert substrate of graphene. J. Chem. Phys. 2013, 138, 054701.

91

Carter, D. J.; Rohl, A. L. Noncovalent interactions in SIESTA using the vdW-DF functional: S22 benchmark and macrocyclic structures. J. Chem. Theory Comput. 2012, 8, 281-289.

92

Hermann, A.; Schmidt, W. G.; Schwerdtfeger, P. Resolving the optical spectrum of water: Coordination and electrostatic effects. Phys. Rev. Lett. 2008, 100, 207403.

93

Xia, W. Q.; Hu, W.; Li, Z. Y.; Yang, J. L. A first-principles study of gas adsorption on germanene. Phys. Chem. Chem. Phys. 2014, 16, 22495-22498.

94

Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 2015, 114, 046801.

File
nr-10-7-2223_ESM.pdf (996.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 October 2016
Revised: 05 December 2016
Accepted: 09 December 2016
Published: 27 March 2017
Issue date: July 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This paper is partially supported by the National Key Research & Development Program of China (No. 2016YFA0200604), National Natural Science Foundation of China (Nos. 21233007, 21421063, and 21688102), and Chinese Academy of Sciences (No. XDB01020300). This work is also partially supported by the Scientific Discovery through Advanced Computing (SciDAC) Program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (W. H.). We thank the National Energy Research Scientific Computing (NERSC) center, and the USTCSCC, SC-CAS, Tianjin, and Shanghai Supercomputer Centers for the computational resources.

Return