Journal Home > Volume 10 , Issue 3

Despite the considerably improved efficiency of inorganic-organic metal hybrid perovskite solar cells (PSCs), electron transport is still a challenging issue. In this paper, we report the use of ZnO nanorods prepared by hydrothermal self- assembly as the electron transport layer in perovskite solar cells. The efficiency of the perovskite solar cells is significantly enhanced by passivating the interfacial defects via atomic layer deposition of Al2O3 monolayers on the ZnO nanorods. By employing the Al2O3 monolayers, the average power conversion efficiency of methylammonium lead iodide PSCs was increased from 10.33% to 15.06%, and the highest efficiency obtained was 16.08%. We suggest that the passivation of defects using the atomic layer deposition of monolayers might provide a new pathway for the improvement of all types of PSCs..


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition

Show Author's information Shibin Li1( )Peng Zhang1Yafei Wang1Hojjatollah Sarvari2Detao Liu1Jiang Wu3Yajie Yang1Zhiming Wang4Zhi David Chen1,2( )
School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengdu610054China
Department of Electrical & Computer Engineering and Center for Nanoscale Science & EngineeringUniversity of Kentucky, LexingtonKentucky40506USA
Department of Electronic and Electrical EngineeringUniversity College London, Torrington PlaceLondonWC1E 7JEUK
Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China

Abstract

Despite the considerably improved efficiency of inorganic-organic metal hybrid perovskite solar cells (PSCs), electron transport is still a challenging issue. In this paper, we report the use of ZnO nanorods prepared by hydrothermal self- assembly as the electron transport layer in perovskite solar cells. The efficiency of the perovskite solar cells is significantly enhanced by passivating the interfacial defects via atomic layer deposition of Al2O3 monolayers on the ZnO nanorods. By employing the Al2O3 monolayers, the average power conversion efficiency of methylammonium lead iodide PSCs was increased from 10.33% to 15.06%, and the highest efficiency obtained was 16.08%. We suggest that the passivation of defects using the atomic layer deposition of monolayers might provide a new pathway for the improvement of all types of PSCs..

Keywords: oxygen vacancy, perovskite solar cell, ZnO nanorods, Al2O3 monolayer, charge recombination

References(52)

1

Chen, L.; Tang, F.; Wang, Y. X.; Gao, S.; Cao, W. G.; Cai, J. H.; Chen, L. W. Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid- state chemistry. Nano Res. 2015, 8, 263-270.

2

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all- solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

3

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso- superstructured organometal halide perovskites. Science 2012, 338, 643-647.

4

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319.

5

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.

6

Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739-1743.

7

Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250-3258.

8

Yella, A.; Heiniger, L. P.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 2014, 14, 2591-2596.

9

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506-514.

10

Yan, W. B.; Li, Y. L.; Li, Y.; Ye, S. Y.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Res. 2015, 8, 2474-2480.

11

Liu, D. T.; Li, S. B.; Zhang, P.; Wang, Y. F.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z. M.; Chen, Z. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 2017, 31, 462-468.

12

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.

13

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.

14

Yin, X.; Guo, Y. J.; Xue, Z. S.; Xu, P.; He, M.; Liu, B. Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. Nano Res. 2015, 8, 1997-2003.

15

Bi, D. Q.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J. S.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Baena, J. P. C. et al. Efficient luminescent solar cells based on tailored mixed- cation perovskites. Sci. Adv. 2016, 2, e1501170.

16

Zuo, F.; Williams, S. T.; Liang, P. W.; Chueh, C. C.; Liao, C. Y.; Jen, A. K. Y. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 2014, 26, 6454-6460.

17

Chueh, C. C.; Li, C. Z.; Jen, A. K. Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 2015, 8, 1160-1189.

18

Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122-7127.

19

Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133-138.

20

Son, D. Y.; Im, J. H.; Kim, H. S.; Park, N. G. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system. J. Phys. Chem. C 2014, 118, 16567-16573.

21

Dong, J.; Zhao, Y. H.; Shi, J. J.; Wei, H. Y.; Xiao, J. Y.; Xu, X.; Luo, J. H.; Xu, J.; Li, D. M.; Luo, Y. H. et al. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. 2014, 50, 13381-13384.

22

Mahmood, K.; Swain, B. S.; Amassian, A. 16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Adv. Energy Mater. 2015, 5, 1500568.

23

Bi, D. Q.; Boschloo, G.; Schwarzmüller, S.; Yang, L.; Johansson, E. M. J.; Hagfeldt, A. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 2013, 5, 11686-11691.

24

Cheng, Y. H.; Yang, Q. D.; Xiao, J. Y.; Xue, Q. F.; Li, H. W.; Guan, Z. Q.; Yip, H. L.; Tang, S. W. Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 19986-19993.

25

Shi, J. J.; Xu, X.; Li, D. M.; Meng, Q. B. Interfaces in perovskite solar cells. Small 2015, 11, 2472-2486.

26

Poodt, P.; Lankhorst, A.; Roozeboom, F.; Spee, K.; Maas, D.; Vermeer, A. High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 2010, 22, 3564-3567.

27

Dong, X.; Fang, X.; Lv, M. H.; Lin, B. C.; Zhang, S.; Ding, J. N.; Yuan, N. Y. Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 2015, 3, 5360-5367.

28

Chang, C. Y.; Lee, K. T.; Huang, W. K.; Siao, H. Y.; Chang, Y. C. High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mat. 2015, 27, 5122-5130.

29

Lee, Y. H.; Luo, J. S.; Son, M. K.; Gao, P.; Cho, K. T.; Seo, J.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Enhanced charge collection with passivation layers in perovskite solar cells. Adv. Mater. 2016, 28, 3966-3972.

30

Dong, J.; Xu, X.; Shi J. J.; Li, D. M.; Luo, Y. H.; Meng, Q. B.; Chen, Q. Suppressing charge recombination in ZnO- nanorod-based perovskite solar cells with atomic-layer- deposition TiO2. Chin. Phys. Lett. 2015, 32, 078401.

31

Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X. X.; Janssen, R. A. J. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 2005, 109, 9505-9516.

32

Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem., Int. Ed. 2002, 41, 1188-1191.

DOI
33

Wang, M. J.; Li, S. B.; Zhang, P.; Wang, Y. F.; Li, H. Q.; Chen, Z. A modified sequential method used to prepare high quality perovskite on ZnO nanorods. Chem. Phys. Lett. 2015, 639, 283-288.

34

Li, H. Q.; Li, S. B.; Wang, Y. F.; Sarvari, H.; Zhang, P.; Wang, M. J.; Chen, Z. A modified sequential deposition method for fabrication of perovskite solar cells. Sol. Energy 2016, 126, 243-251.

35

Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151-157.

36

Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014, 7, 2934-2938.

37

Liang, L. S.; Huang, Z. F.; Cai, L. H.; Chen, W. Z.; Wang, B. Z.; Chen, K. W.; Bai, H.; Tian, Q. Y.; Fan, B. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS Appl. Mater. Interfaces 2014, 6, 20585-20589.

38

Dong, J.; Shi, J. J.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Appl. Phys. Lett. 2015, 107, 073507.

39

Tseng, Z. L.; Chiang, C. H.; Wu, C. G. Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells. Sci. Rep. 2015, 5, 13211.

40

Nicolaev, A.; Mitran, T. L.; Iftimie, S.; Nemnes, G. A. Optimization of halide perovskite solar cells based on nanocolumnar ZnO. Sol. Energ. Mat. Sol. C. 2016, 158, 202-208.

41

Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666-671.

42

Frank, M. M.; Chabal, Y. J.; Green, M. L.; Delabie, A.; Brijs, B.; Wilk, G. D.; Ho, M. Y.; da Rosa, E. B. O.; Baumvol, I. J. R.; Stedile, F. C. Enhanced initial growth of atomic- layer-deposited metal oxides on hydrogen-terminated silicon. Appl. Phys. Lett. 2003, 83, 740-742.

43

Groner, M. D.; Fabreguette, F. H.; Elam, J. W.; George, S. M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 2004, 16, 639-645.

44

Wilson, C. A.; Grubbs, R. K.; George, S. M. Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 2005, 17, 5625-5634.

45

Heo, J. H.; You, M. S.; Chang, M. H.; Yin, W. P.; Ahn, T. K.; Lee, S. J.; Sung, S. J.; Kim, D. H.; Im, S. H. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 2015, 15, 530-539.

46

Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486-491.

47

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897-903.

48

Kim, H. S.; Jang, I. H.; Ahn, N.; Choi, M.; Guerrero, A.; Bisquert, J.; Park, N. G. Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 2015, 6, 4633-4639.

49

Wang, L.; Feng, L.; Cui, C. S.; Xu, S. L.; Liu, J. F.; Sun, X. Y.; Gao, X. X.; Wang, W. J. Study on the surface functionalization of ZnO nanorods and their tunable electrochemiluminescence properties. ECS J. Solid State Sci. 2016, 5, R74-R81.

50

Prasanna, S.; Mohan Rao, G.; Jayakumar, S.; Kannan, M. D.; Ganesan, V. Dielectric properties of DC reactive magnetron sputtered Al2O3 thin films. Thin Solid Films 2012, 520, 2689-2694.

51

Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djurišic, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L. et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B. 2006, 110, 20865-20871.

52

Chen, C.; He, H. P.; Lu, Y. F.; Wu, K. W.; Ye, Z. Z. Surface passivation effect on the Photoluminescence of ZnO nanorods. ACS Appl. Mater. Interfaces 2013, 5, 6354-6359.

File
nr-10-3-1092_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2016
Revised: 28 November 2016
Accepted: 03 December 2016
Published: 22 December 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61474016, 61405026, 61371046, 61421002, 6157031208, and 61471085), and National Higher-education Institution General Research and Development Fund (No. ZYGX2014J044), Projects of International Cooperation of Sichuan Province (No. 2014HH0041). University of Kentucky also partially supported this work.

Return