Journal Home > Volume 10 , Issue 5

Lead-halide perovskite solar cells (PSCs) have attracted tremendous attention during the past few years owing to their extraordinary electronic and photonic properties. To improve the performances of PSCs, many researchers have focused on the compositional engineering, solvent engineering, and film fabrication methodologies. Interfacial engineering of PSCs has become a burgeoning field in which researchers aim to deeply understand the mechanisms of cells and thereby increase the efficiency and stability of PSCs. This review focuses on the interface tailoring of lead-halide PSCs, including the modification of each layer of the cell structure (i.e., perovskite absorber, electron-transport layers, and hole- transport layers) and the interfacial materials that can be introduced into the PSCs.


menu
Abstract
Full text
Outline
About this article

Tailoring interface of lead-halide perovskite solar cells

Show Author's information Peimei DaGengfeng Zheng( )
Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials Fudan UniversityShanghai 200438 China

Abstract

Lead-halide perovskite solar cells (PSCs) have attracted tremendous attention during the past few years owing to their extraordinary electronic and photonic properties. To improve the performances of PSCs, many researchers have focused on the compositional engineering, solvent engineering, and film fabrication methodologies. Interfacial engineering of PSCs has become a burgeoning field in which researchers aim to deeply understand the mechanisms of cells and thereby increase the efficiency and stability of PSCs. This review focuses on the interface tailoring of lead-halide PSCs, including the modification of each layer of the cell structure (i.e., perovskite absorber, electron-transport layers, and hole- transport layers) and the interfacial materials that can be introduced into the PSCs.

Keywords: perovskite solar cell, interface engineering

References(180)

1

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050– 6051.

2
National renewable energy laboratory. Photovoltaic Research. www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed Oct 25, 2016).
3

Niu, G. D.; Li, W. Z.; Li, J. W.; Wang, L. D. Progress of interface engineering in perovskite solar cells. Sci. China Mater. 2016, 59, 728–742.

4

Sha, W. E. I.; Ren, X. G.; Chen, L. Z.; Choy, W. C. H. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 2015, 106, 221104.

5

Tiep, N. H.; Ku, Z. L.; Fan, H. J. Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 2016, 6, 1501420.

6

Guerrero, A.; You, J. B.; Aranda, C.; Kang, Y. S.; Garcia-Belmonte, G.; Zhou, H. P.; Bisquert, J.; Yang, Y. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 2016, 10, 218–224.

7

Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737–743.

8

Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610–11613.

9

D'Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.

10

Edri, E.; Kirmayer, S.; Mukhopadhyay, S.; Gartsman, K.; Hodes, G.; Cahen, D. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat. Commun. 2014, 5, 3461.

11

Sharma, B. L.; Purohit, R. K. Semiconductor Heterojunctions; Elsevier: New York, 2015.

12

Shi, J. J.; Xu, X.; Li, D. M.; Meng, Q. B. Interfaces in perovskite solar cells. Small 2015, 11, 2472–2486.

13

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, New Jersey, 2006.

DOI
14

Lindblad, R.; Bi, D. Q.; Park, B.-W.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M.; Rensmo, H. K. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 2014, 5, 648–653.

15

Schulz, P.; Edri, E.; Kirmayer, S.; Hodes, G.; Cahen, D.; Kahn, A. Interface energetics in organo-metal halide perovskite- based photovoltaic cells. Energy Environ. Sci. 2014, 7, 1377–1381.

16

Miller, E. M.; Zhao, Y. X.; Mercado, C. C.; Saha, S. K.; Luther, J. M.; Zhu, K.; Stevanović, V.; Perkins, C. L.; van de Lagemaat, J. Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 2014, 16, 22122–22130.

17

Jiang, Q. L.; Sheng, X.; Shi, B.; Feng, X. J.; Xu, T. Nickel-cathoded perovskite solar cells. J. Phys. Chem. C 2014, 118, 25878–25883.

18

Jeong, I.; Kim, H. J.; Lee, B.-S.; Son, H. J.; Kim, J. Y.; Lee, D.-K.; Kim, D.-E.; Lee, J.; Ko, M. J. Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy 2015, 17, 131–139.

19

Jiang, Z. Y.; Chen, X. H.; Lin, X. H.; Jia, X. K.; Wang, J. F.; Pan, L. K.; Huang, S. M.; Zhu, F. R.; Sun, Z. Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energ. Mat. Sol. C 2016, 146, 35–43.

20

Ku, Z. L.; Xia, X. H.; Shen, H.; Tiep, N. H.; Fan, H. J. A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale 2015, 7, 13363–13368.

21

Deng, Q. R.; Li, Y. Q.; Chen, L.; Wang, S. G.; Wang, G. M.; Sheng, Y. L.; Shao, G. S. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. Mod. Phys. Lett. B 2016, 30, 1650341.

22

Wei, Z. H.; Chen, H. N.; Yan, K. Y.; Yang, S. H. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/ nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem., Int. Ed. 2014, 53, 13239–13243.

23

Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole- conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.

24

Wei, Z. H.; Yan, K. Y.; Chen, H. N.; Yi, Y.; Zhang, T.; Long, X.; Li, J. K.; Zhang, L. X.; Wang, J. N.; Yang, S. H. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 2014, 7, 3326–3333.

25

Ku, Z. L.; Rong, Y. G.; Xu, M.; Liu, T. F.; Han, H. W. Full printable processed mesoscopic CH3NH3PbI3/TiO2 hetero­junction solar cells with carbon counter electrode. Sci. Rep. 2013, 3, 3132.

26

Liu, D. Y.; Yang, J. L.; Kelly, T. L. Compact layer free perovskite solar cells with 13.5% efficiency. J. Am. Chem. Soc. 2014, 136, 17116–17122.

27

Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

28

Yang, B.; Dyck, O.; Poplawsky, J.; Keum, J.; Puretzky, A.; Das, S.; Ivanov, I.; Rouleau, C.; Duscher, G.; Geohegan, D. et al. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 2015, 137, 9210–9213.

29

Shao, Y. C.; Fang, Y. J.; Li, T.; Wang, Q.; Dong, Q. F.; Deng, Y. H.; Yuan, Y. B.; Wei, H. T.; Wang, M. Y.; Gruverman, A. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752–1759.

30

Leguy, A. l. M.; Hu, Y. H.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407.

31

Boopathi, K. M.; Mohan, R.; Huang, T.-Y.; Budiawan, W.; Lin, M.-Y.; Lee, C.-H.; Ho, K.-C.; Chu, C.-W. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A 2016, 4, 1591–1597.

32

Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.

33

Wang, K.; Liu, C.; Du, P. C.; Zheng, J.; Gong, X. Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sci. 2015, 8, 1245–1255.

34

Chiang, C.-H.; Wu, C.-G. Bulk heterojunction perovskite- PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196–200.

35

Wu, Y. Z.; Yang, X. D.; Chen, W.; Yue, Y. F.; Cai, M. L.; Xie, F. X.; Bi, E. B.; Islam, A.; Han, L. Y. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.

36

Zhao, Y. C.; Wei, J.; Li, H.; Yan, Y.; Zhou, W. K.; Yu, D. P.; Zhao, Q. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 2016, 7, 10228.

37

Bi, D. Q.; Yi, C. Y.; Luo, J. S.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142.

38

Chuang, P.-Y.; Chuang, C.-N.; Yu, C.-C.; Wang, L.-Y.; Hsieh, K.-H. Enhance the stability and efficiency of perovskite solar cell via gel-type polyurethane. Polymer 2016, 97, 196–204.

39

Li, X.; Dar, M. I.; Yi, C. Y.; Luo, J. S.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H. W.; Grätzel, M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 2015, 7, 703–711.

40

Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem., Int. Ed. 2014, 53, 3151–3157.

41

Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 2014, 126, 11414–11417.

42

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

43

Hu, Y. H.; Schlipf, J.; Wussler, M.; Petrus, M. L.; Jaegermann, W.; Bein, T.; Müller-Buschbaum, P.; Docampo, P. Hybrid perovskite/perovskite heterojunction solar cells. ACS Nano 2016, 10, 5999–6007.

44

Seol, D. J.; Lee, J. W.; Park, N. G. On the role of interfaces in planar-structured HC(NH2)2PbI3 perovskite solar cells. ChemSusChem 2015, 8, 2414–2419.

45

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

46

Colella, S.; Mosconi, E.; Pellegrino, G.; Alberti, A.; Guerra, V. L. P.; Masi, S.; Listorti, A.; Rizzo, A.; Condorelli, G. G.; De Angelis, F. et al. Elusive presence of chloride in mixed halide perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 3532–3538.

47

Mosconi, E.; Ronca, E.; De Angelis, F. First-principles investigation of the TiO2/organohalide perovskites interface: The role of interfacial chlorine. J. Phys. Chem. Lett. 2014, 5, 2619–2625.

48

Liang, P. W.; Chueh, C. C.; Xin, X. K.; Zuo, F.; Williams, S. T.; Liao, C. Y.; Jen, A. K. Y. High-performance planar- heterojunction solar cells based on ternary halide large- band-gap perovskites. Adv. Energy Mater. 2015, 5, 1400960.

49

Pellegrino, G.; Colella, S.; Deretzis, I.; Condorelli, G. G.; Smecca, E.; Gigli, G.; La Magna, A.; Alberti, A. Texture of MAPbI3 layers assisted by chloride on flat TiO2 substrates. J. Phys. Chem. C 2015, 119, 19808–19816.

50

Cojocaru, L.; Uchida, S.; Matsubara, D.; Matsumoto, H.; Ito, K.; Otsu, Y.; Chapon, P.; Nakazaki, J.; Kubo, T.; Segawa, H. Direct confirmation of distribution for Cl in CH3NH3PbI3–xClx layer of perovskite solar cells. Chem. Lett. 2016, 45, 884–886.

51

Yang, M. J.; Zhang, T. Y.; Schulz, P.; Li, Z.; Li, G.; Kim, D. H.; Guo, N. J.; Berry, J. J.; Zhu, K.; Zhao, Y. X. Facile fabrication of large-grain CH3NH3PbI3–xBrx films for high- efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 2016, 7, 12305.

52

Luo, P. F.; Liu, Z. F.; Xia, W.; Yuan, C. C.; Cheng, J. G.; Xu, C. X.; Lu, Y. W. Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for con­trollable preparation of efficient and stable perovskite solar cells. J. Mater. Chem. A 2015, 3, 22949–22959.

53

Liu, D.; Wu, L. L.; Li, C. X.; Ren, S. Q.; Zhang, J. Q.; Li, W.; Feng, L. H. Controlling CH3NH3PbI3–xClx film morphology with two-step annealing method for efficient hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 16330–16337.

54

Zhu, W. D.; Yu, T.; Li, F. M.; Bao, C. X.; Gao, H.; Yi, Y.; Yang, J.; Fu, G.; Zhou, X. X.; Zou, Z. G. A facile, solvent vapor–fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells. Nanoscale 2015, 7, 5427–5434.

55

Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 2014, 126, 10056–10061.

56

Cao, J.; Jing, X. J.; Yan, J. Z.; Hu, C. Y.; Chen, R. H.; Yin, J.; Li, J.; Zheng, N. F. Identifying the molecular structures of intermediates for optimizing the fabrication of high-quality perovskite films. J. Am. Chem. Soc. 2016, 138, 9919–9926.

57

Kim, H.-B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/ fullerene hybrid solar cells. Nanoscale 2014, 6, 6679–6683.

58

Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014, 7, 2934–2938.

59

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

60

Jung, J. W.; Williams, S. T.; Jen, A. K.-Y. Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Adv. 2014, 4, 62971–62977.

61

Lin, N.; Qiao, J.; Dong, H. P.; Ma, F. S.; Wang, L. D. Morphology-controlled CH3NH3PbI3 films by hexane-assisted one-step solution deposition for hybrid perovskite mesoscopic solar cells with high reproductivity. J. Mater. Chem. A 2015, 3, 22839–22845.

62

Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P. H.; Kanatzidis, M. G. Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 2014, 136, 16411–16419.

63

Tai, Q. D.; You, P.; Sang, H. Q.; Liu, Z. K.; Hu, C. L.; Chan, H. L. W.; Yan, F. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 2016, 7, 11105.

64

Xia, X.; Li, H. C.; Wu, W. Y.; Li, Y. H.; Fei, D. H.; Gao, C. X.; Liu, X. Z. Efficient light harvester layer prepared by solid/mist interface reaction for perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 16907–16912.

65

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

66

Xie, Y.; Shao, F.; Wang, Y. M.; Xu, T.; Wang, D. L.; Huang, F. Q. Enhanced performance of perovskite CH3NH3PbI3 solar cell by using CH3NH3I as additive in sequential deposition. ACS Appl. Mater. Interfaces 2015, 7, 12937–12942.

67

Das, S.; Yang, B.; Gu, G.; Joshi, P. C.; Ivanov, I. N.; Rouleau, C. M.; Aytug, T.; Geohegan, D. B.; Xiao, K. High- performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics 2015, 2, 680–686.

68

Yang, L. J.; Wang, J. C.; Leung, W. W.-F. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 14614–14619.

69

Chen, H. N.; Wei, Z. H.; Zheng, X. L.; Yang, S. H. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 2015, 15, 216–226.

70

Ying, C.; Shi, C. W.; Wu, N.; Zhang, J. C.; Wang, M. A two-layer structured PbI2 thin film for efficient planar perovskite solar cells. Nanoscale 2015, 7, 12092–12095.

71

Singh, T.; Miyasaka, T. High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions. Chem. Commun. 2016, 52, 4784–4787.

72

Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019– 9038.

73

Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Cryst. 2008, 64, 702–707.

74

Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl. Phys. Lett. 2013, 103, 183906.

75

Cao, D. H.; Stoumpos, C. C.; Malliakas, C. D.; Katz, M. J.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite- based solar cells? APL Mater. 2014, 2, 091101.

76

Roldán-Carmona, C.; Gratia, P.; Zimmermann, I.; Grancini, G.; Gao, P.; Graetzel, M.; Nazeeruddin, M. K. High efficiency methylammonium lead triiodide perovskite solar cells: The relevance of non-stoichiometric precursors. Energy Environ. Sci. 2015, 8, 3550–3556.

77

Wu, W.-Q.; Huang, F. Z.; Chen, D. H.; Cheng, Y.-B.; Caruso, R. A. Solvent-mediated dimension tuning of semiconducting oxide nanostructures as efficient charge extraction thin films for perovskite solar cells with efficiency exceeding 16%. Adv. Energy Mater. 2016, 6, 1502027.

78

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

79

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

80

Gubbala, S.; Chakrapani, V.; Kumar, V.; Sunkara, M. K. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater. 2008, 18, 2411–2418.

81

Tao, H.; Ke, W. J.; Wang, J.; Liu, Q.; Wan, J. W.; Yang, G.; Fang, G. J. Perovskite solar cell based on network nanoporous layer consisted of TiO2 nanowires and its interface optimization. J. Power. Sources 2015, 290, 144–152.

82

Chen, H. N.; Wei, Z. H.; Yan, K. Y.; Yi, Y.; Wang, J. N.; Yang, S. H. Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage. Faraday Discuss 2014, 176, 271–286.

83

Wang, H.-H.; Chen, Q.; Zhou, H. P.; Song, L.; St Louis, Z.; De Marco, N.; Fang, Y. H.; Sun, P. Y.; Song, T.-B.; Chen, H. J. et al. Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives. J. Mater. Chem. A 2015, 3, 9108–9115.

84

Zhang, J.; Pauporté, T. Effects of oxide contact layer on the preparation and properties of CH3NH3PbI3 for perovskite solar cell application. J. Phys. Chem. C 2015, 119, 14919– 14928.

85

Baena, J. P. C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Kandada, A. R. S.; Zakeeruddin, S. M. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934.

86

Song, J. X.; Zheng, E. Q.; Bian, J.; Wang, X.-F.; Tian, W. J.; Sanehira, Y.; Miyasaka, T. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A 2015, 3, 10837–10844.

87

Mahmood, K.; Swain, B. S.; Kirmani, A. R.; Amassian, A. Highly efficient perovskite solar cells based on a nano­structured WO3–TiO2 core–shell electron transporting material. J. Mater. Chem. A 2015, 3, 9051–9057.

88

Liu, J.; Gao, C.; Luo, L. Z.; Ye, Q. Y.; He, X. L.; Ouyang, L. Q.; Guo, X. W.; Zhuang, D. M.; Liao, C.; Mei, J. et al. Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. J. Mater. Chem. A 2015, 3, 11750–11755.

89

You, J. B.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y. M.; Chang, W.-H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81.

90

Yang, G.; Tao, H.; Qin, P. L.; Ke, W. J.; Fang, G. J. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 2016, 4, 3970–3990.

91

Xia, F.; Wu, Q. L.; Zhou, P. C.; Li, Y.; Chen, X.; Liu, Q.; Zhu, J.; Dai, S. Y.; Lu, Y. L.; Yang, S. F. Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer. ACS Appl. Mater. Interfaces 2015, 7, 13659–13665.

92

Chang, C.-Y.; Huang, W.-K.; Chang, Y.-C.; Lee, K.-T.; Chen, C.-T. A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. J. Mater. Chem. A 2016, 4, 640–648.

93

Bai, Y.; Yu, H.; Zhu, Z. L.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S. H.; Yan, H. High performance inverted structure perovskite solar cells based on a PCBM: Polystyrene blend electron transport layer. J. Mater. Chem. A 2015, 3, 9098–9102.

94

Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 5360–5367.

95

Li, J. W.; Li, W. Z.; Dong, H. P.; Li, N.; Guo, X. D.; Wang, L. D. Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. J. Mater. Chem. A 2015, 3, 8882–8889.

96

Hawash, Z.; Ono, L. K.; Raga, S. R.; Lee, M. V.; Qi, Y. B. Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem. Mater. 2015, 27, 562–569.

97

Jung, M.-C.; Raga, S. R.; Ono, L. K.; Qi, Y. B. Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering. Sci. Rep. 2015, 5, 9863.

98

Shit, A.; Nandi, A. K. Interface engineering of hybrid perovskite solar cells with poly(3-thiophene acetic acid) under ambient conditions. Phys. Chem. Chem. Phys. 2016, 18, 10182–10190.

99

Hou, Y.; Chen, W.; Baran, D.; Stubhan, T.; Luechinger, N. A.; Hartmeier, B.; Richter, M.; Min, J.; Chen, S.; Quiroz, C. O. R. et al. Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 2016, 28, 5112–5120.

100

Zhu, Z. L.; Bai, Y.; Lee, H. K. H.; Mu, C.; Zhang, T.; Zhang, L. X.; Wang, J. N.; Yan, H.; So, S. K.; Yang, S. H. Polyfluorene derivatives are high-performance organic hole-transporting materials for inorganic−organic hybrid perovskite solar cells. Adv. Funct. Mater. 2014, 24, 7357– 7365.

101

Liu, J.; Wu, Y. Z.; Qin, C. J.; Yang, X. D.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W. Q.; Chen, W.; Han, L. Y. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 2014, 7, 2963–2967.

102

Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution- processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 2013, 23, 2993–3001.

103

Seo, J.; Park, S.; Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 2014, 7, 2642–2646.

104

Fu, Q. X.; Tang, X. L.; Tan, L. C.; Zhang, Y.; Liu, Y. W.; Chen, L.; Chen, Y. W. Versatile molybdenum isopropoxide for efficient mesoporous perovskite solar cells: Simultaneously optimized morphology and interfacial engineering. J. Phys. Chem. C 2016, 120, 15089–15095.

105

Back, H.; Kim, G.; Kim, J.; Kong, J.; Kim, T. K.; Kang, H.; Kim, H.; Lee, J.; Lee, S.; Lee, K. Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 2016, 9, 1258–1263.

106

Li, W. Z.; Zhang, W.; Van Reenen, S.; Sutton, R. J.; Fan, J. D.; Haghighirad, A. A.; Johnston, M. B.; Wang, L. D.; Snaith, H. J. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 2016, 9, 490–498.

107

Shi, J. J.; Dong, W.; Xu, Y.-Z.; Li, C.-H.; Lv, S.-T.; Zhu, L.-F.; Dong, J.; Luo, Y.-H.; Li, D.-M.; Meng, Q.-B. et al. Enhanced performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator-semiconductor back contact. Chin. Phys. Lett. 2013, 30, 128402.

108

Niu, G. D.; Li, W. Z.; Meng, F. Q.; Wang, L. D.; Dong, H. P.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705–710.

109

Dong, X.; Fang, X.; Lv, M. H.; Lin, B. C.; Zhang, S.; Ding, J. N.; Yuan, N. Y. Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 2015, 3, 5360–5367.

110

Marin-Beloqui, J. M.; Lanzetta, L.; Palomares, E. Decreasing charge losses in perovskite solar cells through mp-TiO2/ MAPI interface engineering. Chem. Mater. 2016, 28, 207–213.

111

Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

112

Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.

113

Guo, X. D.; Dong, H. P.; Li, W. Z.; Li, N.; Wang, L. D. Multifunctional MgO layer in perovskite solar cells. ChemPhysChem 2015, 16, 1727–1732.

114

Ogomi, Y.; Kukihara, K.; Qing, S.; Toyoda, T.; Yoshino, K.; Pandey, S.; Momose, H.; Hayase, S. Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. ChemPhysChem 2014, 15, 1062–1069.

115

Kaltenbrunner, M.; Adam, G.; Głowacki, E. D.; Drack, M.; Schwödiauer, R.; Leonat, L.; Apaydin, D. H.; Groiss, H.; Scharber, M. C.; White, M. S. et al. Flexible high power- per-weight perovskite solar cells with chromium oxide- metal contacts for improved stability in air. Nat. Mater. 2015, 14, 1032–1039.

116

Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. Not all that glitters is gold: Metal-migration- induced degradation in perovskite solar cells. ACS Nano 2016, 10, 6306–6314.

117

Dong, H. P.; Guo, X. D.; Li, W. Z.; Wang, L. D. Cesium carbonate as a surface modification material for organic– inorganic hybrid perovskite solar cells with enhanced performance. RSC Adv. 2014, 4, 60131–60134.

118

Hu, Q.; Wu, J.; Jiang, C.; Liu, T. H.; Que, X. L.; Zhu, R.; Gong, Q. H. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano 2014, 8, 10161–10167.

119

Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 2014, 118, 16995–17000.

120

Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004.

121

Xiao, Z. G.; Yuan, Y. B.; Shao, Y. C.; Wang, Q.; Dong, Q. F.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. S. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193–198.

122

Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

123

Wu, Y. Z.; Chen, W.; Yue, Y. F.; Liu, J.; Bi, E. B.; Yang, X. D.; Islam, A.; Han, L. Y. Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 20707–20713.

124

Azimi, H.; Ameri, T.; Zhang, H.; Hou, Y.; Quiroz, C. O. R.; Min, J.; Hu, M. Y.; Zhang, Z. G.; Przybilla, T.; Matt, G. J. et al. A universal interface layer based on an amine- functionalized fullerene derivative with dual functionality for efficient solution processed organic and perovskite solar cells. Adv. Energy Mater. 2015, 5, 1401692.

125

Liu, Y.; Bag, M.; Renna, L. A.; Page, Z. A.; Kim, P.; Emrick, T.; Venkataraman, D.; Russell, T. P. Understanding interface engineering for high-performance fullerene/ perovskite planar heterojunction solar cells. Adv. Energy Mater. 2016, 6, 1501606.

126

Wojciechowski, K.; Stranks, S. D.; Abate, A.; Sadoughi, G.; Sadhanala, A.; Kopidakis, N.; Rumbles, G.; Li, C.-Z.; Friend, R. H.; Jen, A. K.-Y. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 2014, 8, 12701–12709.

127

Li, Y. W.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y. S.; Hong, Z. R.; Liu, Z. H.; Hsieh, Y.-T.; Meng, L.; Li, Y. F. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540–15547.

128

Li, W. Z.; Dong, H. P.; Guo, X. D.; Li, N.; Li, J. W.; Niu, G. D.; Wang, L. D. Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J. Mater. Chem. A 2014, 2, 20105–20111.

129

Agresti, A.; Pescetelli, S.; Cinà, L.; Konios, D.; Kakavelakis, G.; Kymakis, E.; Di Carlo, A. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer. Adv. Funct. Mater. 2016, 26, 2686–2694.

130

Feng, S. L.; Yang, Y. G.; Li, M.; Wang, J. M.; Cheng, Z. D.; Li, J. H.; Ji, G. W.; Yin, G. Z.; Song, F.; Wang, Z.-K. et al. High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer. ACS Appl. Mater. Interfaces 2016, 8, 14503–14512.

131

Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon nanotube/ polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 2014, 14, 5561–5568.

132

Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J. Phys. Chem. Lett. 2014, 5, 4207–4212.

133

Li, Z.; Kulkarni, S. A.; Boix, P. P.; Shi, E. Z.; Cao, A. Y.; Fu, K. W.; Batabyal, S. K.; Zhang, J.; Xiong, Q. H.; Wong, L. H. et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 2014, 8, 6797–6804.

134

Zuo, L. J.; Gu, Z. W.; Ye, T.; Fu, W. F.; Wu, G.; Li, H. Y.; Chen, H. Z. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679.

135

Liu, L. F.; Mei, A. Y.; Liu, T. F.; Jiang, P.; Sheng, Y. S.; Zhang, L. J.; Han, H. W. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 2015, 137, 1790–1793.

136

Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T. L.; Hayase, S. All-solid perovskite solar cells with HOCO–R–NH3+I anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 2014, 118, 16651–16659.

137

Shih, Y. C.; Wang, L. Y.; Hsieh, H. C.; Lin, K. F. Enhancing the photocurrent of perovskite solar cells via modification of the TiO2/CH3NH3PbI3 heterojunction interface with amino acid. J. Mater. Chem. A 2015, 3, 9133–9136.

138

Cao, J.; Yin, J.; Yuan, S. F.; Zhao, Y.; Li, J.; Zheng, N. F. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale 2015, 7, 9443–9447.

139

Yang, S.; Wang, Y.; Liu, P. R.; Cheng, Y.-B.; Zhao, H. J.; Yang, H. G. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 2016, 1, 15016.

140

Zhang, J.; Hu, Z. L.; Huang, L. K.; Yue, G. Q.; Liu, J. W.; Lu, X. W.; Hu, Z. Y.; Shang, M. H.; Han, L. Y.; Zhu, Y. J. Bifunctional alkyl chain barriers for efficient perovskite solar cells. Chem. Commun. 2015, 51, 7047–7050.

141

Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2014, 2, 15897–15903.

142

Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732.

143

Wang, Q.; Shao, Y. C.; Dong, Q. F.; Xiao, Z. G.; Yuan, Y. B.; Huang, J. S. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 2014, 7, 2359–2365.

144

Min, J.; Zhang, Z.-G.; Hou, Y.; Ramirez Quiroz, C. O.; Przybilla, T.; Bronnbauer, C.; Guo, F.; Forberich, K.; Azimi, H.; Ameri, T. et al. Interface engineering of perovskite hybrid solar cells with solution-processed perylene–diimide heterojunctions toward high performance. Chem. Mater. 2015, 27, 227–234.

145

Qian, M.; Li, M.; Shi, X.-B.; Ma, H.; Wang, Z.-K.; Liao, L.-S. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. J. Mater. Chem. A 2015, 3, 13533–13539.

146

Sun, K.; Chang, J. J.; Isikgor, F. H.; Li, P. C.; Ouyang, J. Y. Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. Nanoscale 2015, 7, 896–900.

147

Jiang, L.-L.; Cong, S.; Lou, Y.-H.; Yi, Q.-H.; Zhu, J.-T.; Ma, H.; Zou, G.-F. Interface engineering toward enhanced efficiency of planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 217–222.

148

Yuan, D.-X.; Yuan, X.-D.; Xu, Q.-Y.; Xu, M.-F.; Shi, X.-B.; Wang, Z.-K.; Liao, L.-S. A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells. Phys. Chem. Chem. Phys. 2015, 17, 26653–26658.

149

Li, C.; Wang, F. Z.; Xu, J.; Yao, J. X.; Zhang, B.; Zhang, C. F.; Xiao, M.; Dai, S. Y.; Li, Y. F.; Tan, Z. A. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recom­bination. Nanoscale 2015, 7, 9771–9778.

150

Zhang, H.; Azimi, H.; Hou, Y.; Ameri, T.; Przybilla, T.; Spiecker, E.; Kraft, M.; Scherf, U.; Brabec, C. J. Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer. Chem. Mater. 2014, 26, 5190–5193.

151

Xue, Q. F.; Hu, Z. C.; Liu, J.; Lin, J. H.; Sun, C.; Chen, Z. M.; Duan, C. H.; Wang, J.; Liao, C.; Lau, W. M. et al. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino- functionalized polymer interlayer. J. Mater. Chem. A 2014, 2, 19598–19603.

152

Chen, W.; Zhu, Y. D.; Yu, Y. Z.; Xu, L. M.; Zhang, G. N.; He, Z. B. Low cost and solution processed interfacial layer based on poly(2-ethyl-2-oxazoline) nanodots for inverted perovskite solar cells. Chem. Mater. 2016, 28, 4879–4883.

153

Wang, K.; Liu, C.; Yi, C.; Chen, L.; Zhu, J. H.; Weiss, R. A.; Gong, X. Efficient perovskite hybrid solar cells via ionomer interfacial engineering. Adv. Funct. Mater. 2015, 25, 6875–6884.

154

Wang, Q.; Dong, Q. F.; Li, T.; Gruverman, A.; Huang, J. S. Thin insulating tunneling contacts for efficient and water- resistant perovskite solar cells. Adv. Mater. 2016, 28, 6734–6739.

155

Zhu, Z. L.; Ma, J. N.; Wang, Z. L.; Mu, C.; Fan, Z. T.; Du, L. L.; Bai, Y.; Fan, L. Z.; Yan, H.; Phillips, D. L. et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 2014, 136, 3760–3763.

156

Tavakoli, M. M.; Tavakoli, R.; Nourbakhsh, Z.; Waleed, A.; Virk, U. S.; Fan, Z. Y. High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 2016, 3, 1500790.

157

Cha, M. Y.; Da, P. M.; Wang, J.; Wang, W. Y.; Chen, Z. H.; Xiu, F. X.; Zheng, G. F.; Wang, Z.-S. Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots. J. Am. Chem. Soc. 2016, 138, 8581–8587.

158

Hu, L.; Wang, W. W.; Liu, H.; Peng, J.; Cao, H. F.; Shao, G.; Xia, Z.; Ma, W. L.; Tang, J. PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 515–518.

159

Li, Y.; Zhu, J.; Huang, Y.; Wei, J. F.; Liu, F.; Shao, Z. P.; Hu, L. H.; Chen, S. H.; Yang, S. F.; Tang, J. W. et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots. Nanoscale 2015, 7, 9902–9907.

160

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X.-G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

161

Wei, H. Y.; Shi, J. J.; Xu, X.; Xiao, J. Y.; Luo, J. H.; Dong, J.; Lv, S. T.; Zhu, L. F.; Wu, H. J.; Li, D. M. et al. Enhanced charge collection with ultrathin AlOx electron blocking layer for hole-transporting material-free perovskite solar cell. Phys. Chem. Chem. Phys. 2015, 17, 4937–4944.

162

Dong, J.; Zhao, Y. H.; Shi, J. J.; Wei, H. Y.; Xiao, J. Y.; Xu, X.; Luo, J. H.; Xu, J.; Li, D. M.; Luo, Y. H. et al. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. 2014, 50, 13381–13384.

163

Wang, Z.-K.; Li, M.; Yuan, D.-X.; Shi, X.-B.; Ma, H.; Liao, L.-S. Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. ACS Appl. Mater. Interfaces 2015, 7, 9645–9651.

164

Han, G. S.; Chung, H. S.; Kim, B. J.; Kim, D. H.; Lee, J. W.; Swain, B. S.; Mahmood, K.; Yoo, J. S.; Park, N.-G.; Lee, J. H. et al. Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. J. Mater. Chem. A 2015, 3, 9160–9164.

165

Kim, J.; Kim, G.; Kim, T. K.; Kwon, S.; Back, H.; Lee, J.; Lee, S. H.; Kang, H.; Lee, K. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J. Mater. Chem. A 2014, 2, 17291–17296.

166

Tao, C.; Neutzner, S.; Colella, L.; Marras, S.; Kandada, A. R. S.; Gandini, M.; De Bastiani, M.; Pace, G.; Manna, L.; Caironi, M. et al. 17.6% stabilized efficiency in low- temperature processed planar perovskite solar cells. Energy Environ. Sci. 2015, 8, 2365–2370.

167

Dong, Y.; Li, W. H.; Zhang, X. J.; Xu, Q.; Liu, Q.; Li, C. H.; Bo, Z. S. Highly efficient planar perovskite solar cells via interfacial modification with fullerene derivatives. Small 2016, 12, 1098–1104.

168

Ihly, R.; Dowgiallo, A.-M.; Yang, M. J.; Schulz, P.; Stanton, N. J.; Reid, O. G.; Ferguson, A. J.; Zhu, K.; Berry, J. J.; Blackburn, J. L. Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ. Sci. 2016, 9, 1439–1449.

169

Tavakoli, M. M.; Tavakoli, R.; Hasanzadeh, S.; Mirfasih, M. H. Interface engineering of perovskite solar cell using a reduced-graphene scaffold. J. Phys. Chem. C 2016, 120, 19531–19536.

170

Abate, A.; Saliba, M.; Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 2014, 14, 3247–3254.

171

Chang, C.-Y.; Chang, Y.-C.; Huang, W.-K.; Lee, K.-T.; Cho, A.-C.; Hsu, C.-C. Enhanced performance and stability of semitransparent perovskite solar cells using solution- processed thiol-functionalized cationic surfactant as cathode buffer layer. Chem. Mater. 2015, 27, 7119–7127.

172

Zhang, J.; Wang, P.; Huang, X. K.; Xu, J.; Wang, L. M.; Yue, G. Q.; Lu, X. W.; Liu, J. W.; Hu, Z. Y.; Wang, Q. et al. Polar molecules modify perovskite surface to reduce recombination in perovskite solar cells. RSC Adv. 2016, 6, 9090–9095.

173

Bai, Y.; Chen, H. N.; Xiao, S.; Xue, Q. F.; Zhang, T.; Zhu, Z. L.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z. C. et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 2016, 26, 2950–2958.

174

Xu, Y. Z.; Shi, J. J.; Lv, S. T.; Zhu, L. F.; Dong, J.; Wu, H. J.; Xiao, Y.; Luo, Y. H.; Wang, S. R.; Li, D. M. et al. Simple way to engineer metal–semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells. ACS Appl. Mater. Interfaces 2014, 6, 5651–5656.

175

Hu, Q.; Liu, Y.; Li, Y.; Ying, L.; Liu, T. H.; Huang, F.; Wang, S. F.; Huang, W.; Zhu, R.; Gong, Q. H. Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. J. Mater. Chem. A 2015, 3, 18483–18491.

176

Dong, H. P.; Li, Y.; Wang, S. F.; Li, W. Z.; Li, N.; Guo, X. D.; Wang, L. D. Interface engineering of perovskite solar cells with PEO for improved performance. J. Mater. Chem. A 2015, 3, 9999–10004.

177

Yun, J. H.; Lee, I.; Kim, T.-S.; Ko, M. J.; Kim, J. Y.; Son, H. J. Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH3NH3PbI3/HTM interface. J. Mater. Chem. A 2015, 3, 22176–22182.

178

Da, P. M.; Cha, M. Y.; Sun, L.; Wu, Y. Z.; Wang, Z.-S.; Zheng, G. F. High-performance perovskite photoanode enabled by Ni passivation and catalysis. Nano Lett. 2015, 15, 3452–3457.

179

Crespo-Quesada, M.; Pazos-Outón, L. M.; Warnan, J.; Kuehnel, M. F.; Friend, R. H.; Reisner, E. Metal- encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 2016, 7, 12555.

180

Hoang, M. T.; Pham, N. D.; Han, J. H.; Gardner, J. M.; Oh, I. Integrated photoelectrolysis of water implemented on organic metal halide perovskite photoelectrode. ACS Appl. Mater. Interfaces 2016, 8, 11904–11909.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 October 2016
Revised: 03 December 2016
Accepted: 04 December 2016
Published: 18 January 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors thank the following funding agencies for supporting this work: the National Basic Research Program of China (No. 2013CB934104), the National Natural Science Foundation of China (Nos. 21322311 and 21473038), the Science and Technology Commission of Shanghai Municipality (No. 14JC1490500), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChem).

Return