Journal Home > Volume 10 , Issue 6

Organic–inorganic hybrid perovskites attract considerable attention owing to their applications in high-efficiency solar cells and light emission. Compared with three-dimensional perovskites, two-dimensional (2D) layered hybrid perovskites have a higher exciton binding energy and potentially higher light-emission efficiency. The growth of high-quality crystalline 2D perovskites with a well-defined nanoscale morphology is desirable because they can be suitable building blocks for integrated optoelectronics and (nano)photonics. Herein, we report the facile solution growth of single-crystal microplates of 2D perovskites based on a 2-phenylethylammonium (C6H5CH2CH2NH3+, PEA) cation, (PEA)2PbX4 (X = Br, I), with a well-defined rectangular geometry and nanoscale thickness through a dissolution–recrystallization process. The crystal structures of (PEA)2PbX4 are first confirmed using single-crystal X-ray diffraction. A solution-phase transport-growth process is developed to grow microplates with a typical size of tens of micrometers and thickness of hundreds of nanometers on another clean substrate different from the substrate coated with lead-acetate precursor film. Surface-topography analysis suggests that the formation of the 2D microplates is likely driven by the wedding-cake growth mechanism. Through halide alloying, the photoluminescence emission of (PEA)2Pb(Br, I)4 perovskites with a narrow peak bandwidth is readily tuned from violet (~410 nm) to green (~530 nm).

File
nr-10-6-2117_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 November 2016
Revised: 29 November 2016
Accepted: 01 December 2016
Published: 18 January 2017
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (No. DE-FG02-09ER46664). D. W. M. also acknowledges financial support from the China Scholarship Council and the Natural Science Foundation of Zhejiang Province of China (No. LY13F040002). L. N. D. also thanks the UW-Madison Advanced Opportunity Fellowship (AOF) and NSF Graduate Research Fellowship for support.

Return