Journal Home > Volume 10 , Issue 6

Carbon nanosheets with a tunable mesopore size, large pore volume, and good electronic conductivity are synthesized via a solution-chemistry approach. In this synthesis, diaminohexane and graphene oxide (GO) are used as the structural directing agents, and a silica colloid is used as a mesopores template. Diaminohexane plays a crucial role in bridging silica colloid particles and GO, as well as initiating the polymerization of benzoxazine on the surfaces of both the GO and silica, resulting in the formation of a hybrid nanosheet polymer. The carbon nanosheets have graphene embedded in them and have several spherical mesopores with a pore volume up to 3.5 cm3·g–1 on their surfaces. These nuerous accessible mesopores in the carbon layers can act as reservoirs to host a high loading of active charge-storage materials with good dispersion and a uniform particle size. Compared with active materials with wide particle-size distributions, the unique proposed configuration with confined and uniform particles exhibits superior electrochemical performance during lithiation and delithiation, especially during long cycles and at high rates.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores

Show Author's information Shuai WangFei ChengPeng ZhangWen-Cui LiAn-Hui Lu( )
State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China

Abstract

Carbon nanosheets with a tunable mesopore size, large pore volume, and good electronic conductivity are synthesized via a solution-chemistry approach. In this synthesis, diaminohexane and graphene oxide (GO) are used as the structural directing agents, and a silica colloid is used as a mesopores template. Diaminohexane plays a crucial role in bridging silica colloid particles and GO, as well as initiating the polymerization of benzoxazine on the surfaces of both the GO and silica, resulting in the formation of a hybrid nanosheet polymer. The carbon nanosheets have graphene embedded in them and have several spherical mesopores with a pore volume up to 3.5 cm3·g–1 on their surfaces. These nuerous accessible mesopores in the carbon layers can act as reservoirs to host a high loading of active charge-storage materials with good dispersion and a uniform particle size. Compared with active materials with wide particle-size distributions, the unique proposed configuration with confined and uniform particles exhibits superior electrochemical performance during lithiation and delithiation, especially during long cycles and at high rates.

Keywords: energy storage, nanosheet, battery, mesoporous carbon, LiFePO4

References(55)

1

Wang, Y. G.; Wang, Y. R.; Hosono, E.; Wang, K. X.; Zhou, H. S. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem., Int. Ed. 2008, 47, 7461–7465.

2

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

3

Tang, Y. P.; Wu, D. Q.; Chen, S.; Zhang, F.; Jia, J. P.; Feng, X. L. Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ. Sci. 2013, 6, 2447–2451.

4

Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene- wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.

5

Su, Y. Z.; Li, S.; Wu, D. Q.; Zhang, F.; Liang, H. W.; Gao, P. F.; Cheng, C.; Feng, X. L. Two-dimensional carbon- coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349–8356.

6

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

7

Yang, S.; Yue, W. B.; Zhu, J.; Ren, Y.; Yang, X. J. Graphene- based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 3570–3576.

8

Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta 2000, 45, 2461–2466.

9

Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L. et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587–1595.

10

Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

11

Cheng, F.; Wang, S.; Lu, A. H.; Li, W. C. Immobilization of nanosized LiFePO4 spheres by 3D coralloid carbon structure with large pore volume and thin walls for high power lithium-ion batteries. J. Power Sources 2013, 229, 249–257.

12

Wei, D. C.; Liu, Y. Q. Controllable synthesis of graphene and its applications. Adv. Mater. 2010, 22, 3225–3241.

13

Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Lai, Q. X.; Zhang, X. G. Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 1096–1101.

14

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

15

Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

16

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

17

Zhou, M.; Cai, T. W.; Pu, F.; Chen, H.; Wang, Z.; Zhang, H. Y.; Guan, S. Y. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 3449–3455.

18

Wang, X.; Cao, X. Q.; Bourgeois, L.; Guan, H.; Chen, S. M.; Zhong, Y. T.; Tang, D. M.; Li, H. Q.; Zhai, T. Y.; Li, L. et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 2012, 22, 2682–2690.

19

Vinayan, B. P.; Ramaprabhu, S. Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications. J. Mater. Chem. A 2013, 1, 3865–3871.

20

Zhu, J.; Wang, D.; Liu, T.; Guo, C. Preparation of Sn-Co- graphene composites with superior lithiumstorage capability. Electrochim. Acta 2014, 125, 347–353.

21

Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.

22

Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphene- based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32.

23

Jin, Z. Y.; Lu, A. H.; Xu, Y. Y.; Zhang, J. T.; Li, W. C. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv. Mater. 2014, 26, 3700–3705.

24

Hao, G. P.; Jin, Z. Y.; Sun, Q.; Zhang, X. Q.; Zhang, J. T.; Lu, A. H. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy Environ. Sci. 2013, 6, 3740–3747.

25

Wei, W.; Liang, H. W.; Parvez, K.; Zhuang, X. D.; Feng, X. L.; Müllen, K. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 1570–1574.

26

Hao, G. P.; Lu, A. H.; Dong, W.; Jin, Z. Y.; Zhang, X. Q.; Zhang, J. T.; Li, W. C. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv. Energy Mater. 2013, 3, 1421–1427.

27

Li, M.; Ding, J.; Xue, J. M. Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors. J. Mater. Chem. A 2013, 1, 7469–7476.

28

Hou, L. R.; Lian, L.; Li, D. K.; Pang, G.; Li, J. F.; Zhang, X. G.; Xiong, S. L.; Yuan, C. Z. Mesoporous N-containing carbon nanosheets towards high-performance electrochemical capacitors. Carbon 2013, 64, 141–149.

29

Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.

30

Liu, S. H.; Gordiichuk, P.; Wu, Z. S.; Liu, Z. Y.; Wei, W.; Wagner, M.; Mohamed-Noriega, N.; Wu, D. Q.; Mai, Y. Y.; Herrmann, A. et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 2015, 6, 8817.

31

Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 5300–5306.

32

Ou, X. W.; Chen, P. L.; Jiang, L.; Shen, Y. F.; Hu, W. P.; Liu, M. H. π-conjugated molecules crosslinked graphene- based ultrathin films and their tunable performances in organic nanoelectronics. Adv. Funct. Mater. 2014, 24, 543–554.

33

Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105.

34

Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

35

Che, J. F.; Shen, L. Y.; Xiao, Y. H. A new approach to fabricate graphene nanosheets in organic medium: Combination of reduction and dispersion. J. Mater. Chem. 2010, 20, 1722–1727.

36

Song, S. G.; Xue, Y. H.; Feng, L. F.; Elbatal, H.; Wang, P. S.; Moorefield, C. N.; Newkome, G. R.; Dai, L. M. Reversible self-assembly of terpyridine-functionalized graphene oxide for energy conversion. Angew. Chem., Int. Ed. 2014, 53, 1415–1419.

37

Wang, J.; Liu, G. P.; Wang, L. Y.; Li, C. F.; Xu, J.; Sun, D. J. Synergistic stabilization of emulsions by poly (oxypropylene)diamine and Laponite particles. Colloids Surf. A: Physicochem. Eng. Asp. 2010, 353, 117–124.

38

Wang, S.; Zhang, L.; Han, F.; Li, W. C.; Xu, Y. Y.; Qu, W. H.; Lu, A. H. Diaminohexane-assisted preparation of coral-like, poly(benzoxazine)-based porous carbons for electrochemical energy storage. ACS Appl. Mater. Interfaces 2014, 6, 11101– 11109.

39

Ghosh, N. N.; Kiskan, B.; Yagci, Y. Polybenzoxazines— New high performance thermosetting resins: Synthesis and properties. Prog. Polym. Sci. 2007, 32, 1344–1391.

40

Yagci, Y.; Kiskan, B.; Ghosh, N. N. Recent advancement on polybenzoxazine—A newly developed high performance thermoset. J. Polym. Sci. A: Polym. Chem. 2009, 47, 5565– 5576.

41

Chernykh, A.; Liu, J. P.; Ishida, H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006, 47, 7664–7669.

42

Allen, D. J.; Ishida, H. Polymerization of linear aliphatic diamine-based benzoxazine resins under inert and oxidative environments. Polymer 2007, 48, 6763–6772.

43

Baqar, M.; Agag, T.; Ishida, H.; Qutubuddin, S. Poly (benzoxazine-co-urethane)s: A new concept for phenolic/ urethane copolymers via one-pot method. Polymer 2011, 52, 307–317.

44

Gao, X. F.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 2010, 114, 832–842.

45

Xing, Y. T.; He, Y. B.; Li, B. H.; Chu, X. D.; Chen, H. Z.; Ma, J.; Du, H. D.; Kang, F. Y. LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochim. Acta 2013, 109, 512–518.

46

Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy- storage devices. Adv. Mater. 2009, 21, 2710–2714.

47

Hasegawa, G.; Ishihara, Y.; Kanamori, K.; Miyazaki, K.; Yamada, Y.; Nakanishi, K.; Abe, T. Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem. Mater. 2011, 23, 5208–5216.

48

Vu, A.; Stein, A. Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater. 2011, 23, 3237–3245.

49

Zhao, J. Q.; He, J. P.; Zhou, J. H.; Guo, Y. X.; Wang, T.; Wu, S. C.; Ding, X. C.; Huang, R. M.; Xue, H. R. Facile synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium ion batteries. J. Phys. Chem. C 2011, 115, 2888–2894.

50

Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126–1129.

51

Wu, Y. M.; Wen, Z. H.; Feng, H. B.; Li, J. H. Sucrose- assisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes. Chem. —Eur. J. 2013, 19, 5631–5636.

52

Bi, H.; Huang, F. Q.; Tang, Y. F.; Liu, Z. Q.; Lin, T. Q.; Chen, J.; Zhao, W. Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochim. Acta 2013, 88, 414–420.

53

Zhao, D.; Feng, Y. L.; Wang, Y. G.; Xia, Y. Y. Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim. Acta 2013, 88, 632–638.

54

Ha, J.; Park, S. K.; Yu, S. H.; Jin, A.; Jang, B.; Bong, S.; Kim, I.; Sung, Y. E.; Piao, Y. Z. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 2013, 5, 8647–8655.

55

Ni, H. F.; Liu, J. K.; Fan, L. Z. Carbon-coated LiFePO4- porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 2013, 5, 2164–2168.

File
nr-10-6-2106_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2016
Revised: 17 November 2016
Accepted: 30 November 2016
Published: 01 March 2017
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The project was supported by National Natural Science Foundation of China (Nos. 21225312, 21473021 and U1303192).

Return