Journal Home > Volume 10 , Issue 6

Lithium-sulfur battery has become one of the most promising candidates for next generation batteries, and it is still restricted due to the low sulfur conductivity, large volume expansion and severe polysulfide shuttling. Herein, we present a novel hybrid electrode with a ternary nanomaterial based on sulfur-impregnated multiwalled carbon nanotubes filled with ordered tin-monoxide nanoparticles (MWCNT-SnO/S). Using a dry plasma reduction method, a mechanically robust material is prepared as a cathode host material for lithium-sulfur batteries. The MWCNT-SnO/S electrode exhibits high conductivity, good ability to capture polysulfides, and small volume change during a repeated charge–discharge process. In situ transmission electron microscopy and ultraviolet–visible absorption results indicate that the MWCNT-SnO host efficiently suppresses volume expansion during lithiation and reduces polysulfide dissolution into the electrolyte. Furthermore, the ordered SnO nanoparticles in the MWCNTs facilitate fast ion/electron transfer during the redox reactions by acting as connective links between the walls of the MWCNTs. The MWCNT-SnO/S cathode with a high sulfur content of 70 wt.% exhibits an initial discharge capacity of 1, 682.4 mAh·g–1 at 167.5 mA·g–1 (0.1 C rate) and retains a capacity of 530.1 mAh·g–1 at 0.5 C after 1, 000 cycles with nearly 100% Coulombic efficiency. Furthermore, the electrode exhibits the high capacity even at a high current rate of 20 C.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode

Show Author's information A-Young Kim1,2Min Kyu Kim1Ji Young Kim1Yuren Wen3Lin Gu3Van-Duong Dao4Ho-Suk Choi4Dongjin Byun2Joong Kee Lee1( )
Center for Energy ConvergenceKorea Institute of Science and TechnologySeoul02792Republic of Korea
Department of Material Science and EngineeringKorea UniversitySeoul02841Republic of Korea
Beijing National Laboratory for Condensed Matter Physics Institute of PhysicsChinese Academy of SciencesBeijing100190China
Department of Chemical Engineering & Applied ChemistryChungnam National UniversityDaejeon34134Republic of Korea

Abstract

Lithium-sulfur battery has become one of the most promising candidates for next generation batteries, and it is still restricted due to the low sulfur conductivity, large volume expansion and severe polysulfide shuttling. Herein, we present a novel hybrid electrode with a ternary nanomaterial based on sulfur-impregnated multiwalled carbon nanotubes filled with ordered tin-monoxide nanoparticles (MWCNT-SnO/S). Using a dry plasma reduction method, a mechanically robust material is prepared as a cathode host material for lithium-sulfur batteries. The MWCNT-SnO/S electrode exhibits high conductivity, good ability to capture polysulfides, and small volume change during a repeated charge–discharge process. In situ transmission electron microscopy and ultraviolet–visible absorption results indicate that the MWCNT-SnO host efficiently suppresses volume expansion during lithiation and reduces polysulfide dissolution into the electrolyte. Furthermore, the ordered SnO nanoparticles in the MWCNTs facilitate fast ion/electron transfer during the redox reactions by acting as connective links between the walls of the MWCNTs. The MWCNT-SnO/S cathode with a high sulfur content of 70 wt.% exhibits an initial discharge capacity of 1, 682.4 mAh·g–1 at 167.5 mA·g–1 (0.1 C rate) and retains a capacity of 530.1 mAh·g–1 at 0.5 C after 1, 000 cycles with nearly 100% Coulombic efficiency. Furthermore, the electrode exhibits the high capacity even at a high current rate of 20 C.

Keywords: lithium-sulfur battery, cathode, high loading, multiwalled carbon nanotube (MWCNT), hybrid nanomaterial, ordered tin monoxide

References(60)

1

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

2

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

3

Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

4

Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. Lithium sulfur battery: Oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 1988, 135, 1045–1048.

5

Peled, E.; Sternberg, Y.; Gorenshtein, A.; Lavi, Y. Lithium- sulfur battery: Evaluation of dioxolane-based electrolytes. J. Electrochem. Soc. 1989, 136, 1621–1625.

6

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

7

Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

8

Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.

9

Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium- sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.

10

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.

11

Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbon- nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.

12

Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

13

Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruna, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

14

Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine- coated, nitrogen-doped, hollow carbon-sulfur double-layered core–shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250–5256.

15

Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

16

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

17

Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.

18

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk– shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

19

Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface- enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

20

Han, X. G.; Xu, Y. H.; Chen, X. Y.; Chen, Y. -C.; Weadock, N.; Wan, J. Y.; Zhu, H. L.; Liu, Y. L.; Li, H. Q.; Rubloff, G. et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy 2013, 2, 1197–1206.

21

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium- sulfur batteries. Nat. Commun. 2015, 6, 5682.

22

Hart, C. J.; Cuisinier, M.; Liang, X.; Kundu, D.; Garsuch, A.; Nazar, L. F. Rational design of sulphur host materials for Li-S batteries: Correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem. Commun. 2015, 51, 2308–2311.

23

Zhou, G. M.; Zhao, Y. B.; Zu, C. X.; Manthiram, A. Free- standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 2015, 12, 240–249.

24

Hwang, J. -Y.; Kim, H. M.; Lee, S. -K.; Lee, J. -H.; Abouimrane, A.; Khaleel, M. A.; Belharouak, I.; Manthiram, A.; Sun, Y. -K. High-energy, high-rate, lithium–sulfur batteries: Synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 2016, 6, 1501480.

25

Campbell, B.; Bell, J.; Hosseini Bay, H.; Favors, Z.; Ionescu, R.; Ozkan, C. S.; Ozkan, M. SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium-sulfur batteries. Nanoscale 2015, 7, 7051–7055.

26

Baba, K.; Kaneko, T.; Hatakeyama, R.; Motomiya, K.; Tohji, K. Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields. Chem. Commun. 2010, 46, 255–257.

27

Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ohsuna, T. et al. Purifying single-walled nanotubes. Nature 1996, 383, 679.

28

Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362, 522–525.

29

Dao, V. D.; Choi, H. S. Dry plasma synthesis of a MWNT-Pt nanohybrid as an efficient and low-cost counter electrode material for dye-sensitized solar cells. Chem. Commun. 2013, 49, 8910–8912.

30

Seri-Levy, A.; Avnir, D. The Brunauer–Emmett–Teller equation and the effects of lateral interactions. A simulation study. Langmuir 1993, 9, 2523–2529.

31

Kruk, M.; Jaroniec, M.; Sayari, A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 1997, 13, 6267–6273.

32

Hu, R. Z.; Sun, W.; Liu, H.; Zeng, M. Q.; Zhu, M. The fast filling of nano-SnO2 in CNTs by vacuum absorption: A new approach to realize cyclic durable anodes for lithium ion batteries. Nanoscale 2013, 5, 11971–11979.

33

Hartley, P. A.; Parfitt, G. D.; Pollack, L. B. The role of the van der Waals force in the agglomeration of powders containing submicron particles. Powder Technol. 1985, 42, 35–46.

34

Li, Z. Q.; Li, B.; Yin, L. W.; Qi, Y. X. Prussion blue- supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 8098–8107.

35

He, G.; Ji, X. L.; Nazar, L. High "C" rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.

36

Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 2013, 1, 4490–4496.

37

Zhang, Q. L.; Wang, W. J.; Li, J. L.; Zhu, J. J.; Wang, L. J.; Zhu, M. F.; Jiang, W. Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites. J. Mater. Chem. A 2013, 1, 12109–12114.

38

Jin, Y. H.; Min, K. M.; Seo, S. D.; Shim, H. W.; Kim, D. W. Enhanced Li storage capacity in 3 nm diameter SnO2 nanocrystals firmly anchored on multiwalled carbon nanotubes. J. Phys. Chem. C 2011, 115, 22062–22067.

39

Zheng, S. Y.; Han, P.; Han, Z.; Zhang, H. J.; Tang, Z. H.; Yang, J. H. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery. Sci. Rep. 2014, 4, 4842.

40

Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 2013, 4, 2985.

41

Lu, S. T.; Cheng, Y. W.; Wu, X. H.; Liu, J. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett. 2013, 13, 2485–2489.

42

Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.

43

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

44

Li, H.; Sun, M. Q.; Zhang, T.; Fang, Y. Q.; Wang, G. C. Improving the performance of PEDOT-PSS coated sulfur@activated porous graphene composite cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 18345–18352.

45

Wu, F.; Ye, Y. S.; Chen, R. J.; Qian, J.; Zhao, T.; Li, L.; Li, W. H. Systematic effect for an ultra long cycle lithium- sulfur battery. Nano Lett. 2015, 15, 7431–7439.

46

Wang, R. H.; Xu, C. H.; Sun, J.; Gao, L.; Yao, H. L. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl. Mater. Interfaces 2014, 6, 3427–3436.

47

Peng, B.; May, J. W.; Gamelin, D. R.; Li, X. S. Effects of crystallographic and shape anisotropies on dopant-carrier exchange interactions in magnetic semiconductor quantum dots. J. Phys. Chem. C 2014, 118, 7630–7636.

48

Wu, M. F.; Wen, Z. Y.; Liu, Y.; Wang, X. Y.; Huang, L. Z. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources 2011, 196, 8091–8097.

49

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N. A.; McDowell, M. T.; Bao, Z. A.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

50

Zhao, Y.; Li, W. B.; Pan, L. J.; Zhai, D. Y.; Wang, Y.; Li, L. L.; Cheng, W.; Yin, W.; Wang, X. R.; Xu, J. B. et al. ZnO-nanorods/graphene heterostructure: A direct electron transfer glucose biosensor. Sci. Rep. 2016, 6, 32327.

51

Chen, Y. J.; Zhu, C. L.; Wang, T. H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 2006, 17, 3012.

52

Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367.

53

Guo, J. C.; Chen, X. L.; Wang, C. S. Carbon scaffold structured silicon anodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 5035–5040.

54

Zheng, S. Y.; Wen, Y.; Zhu, Y. J.; Han, Z.; Wang, J.; Yang, J. H.; Wang, C. S. In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes. Adv. Energy Mater. 2014, 4, 1400482.

55

Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyaniline- coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.

56

Wang, W. G.; Wang, X.; Tian, L. Y.; Wang, Y. L.; Ye, S. H. In situ sulfur deposition route to obtain sulfur-carbon composite cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 4316–4323.

57

Li, Y. J.; Zhan, H.; Liu, S. Q.; Huang, K. L.; Zhou, Y. H. Electrochemical properties of the soluble reduction products in rechargeable Li/S battery. J. Power Sources 2010, 195, 2945–2949.

58

Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

59

Zu, C. X.; Manthiram, A. High-performance Li/dissolved polysulfide batteries with an advanced cathode structure and high sulfur content. Adv. Energy Mater. 2014, 4, 1400897.

60

Diao, Y.; Xie, K.; Xiong, S. Z.; Hong, X. B. Shuttle phenomenon—The irreversible oxidation mechanism of sulfur active material in Li-S battery. J. Power Sources 2013, 235, 181–186.

File
nr-10-6-2083_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 October 2016
Revised: 25 November 2016
Accepted: 28 November 2016
Published: 26 January 2017
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by KIST institutional program (No. 2E27061). This work was also supported by research grants of NRF funded by the National Research Foundation under the Ministry of Science, ICT & Future, Republic of Korea (No. NRF- 2015H1D3A1036078).

Return