Journal Home > Volume 10 , Issue 5

Design and synthesis of efficient photocatalysts for hydrogen production via water splitting are of great importance from both theoretical and practical viewpoints. Many metal-based semiconductors have been explored for this purpose in recent decades. Here, for the first time, an entirely carbon-based material, bulk three-dimensionally cross-linked graphene (3DG), has been developed as a photocatalyst for hydrogen production. It exhibits a remarkable hydrogen production rate of 270 μmol·h−1·gcat−1 under full-spectrum light via a hot/free electron emission mechanism. Furthermore, when combined with the widely used semiconductor TiO2 to form a TiO2/3DG composite, it appears to become a more efficient hydrogen production photocatalyst. The composite achieves a production rate of 1, 205 μmol·h−1·gcat−1 under ultraviolet–visible (UV–vis) light and a 7.2% apparent quantum efficiency at 350 nm due to the strong synergetic effects between TiO2 and 3DG.

File
nr-10-5-1662_ESM.pdf (943.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2016
Revised: 21 November 2016
Accepted: 23 November 2016
Published: 27 February 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the Ministry of Science and Technology of China (No. 2016YFA0200200), the National Natural Science Foundation of China (Nos. 51633002, 51472124, 51273093, and 51502125), the Natural Science Foundation of Hebei Province of China (No. E2016408035), and Science Research Project of Langfang Teachers University (No. LSLB201401).

Return