Journal Home > Volume 10 , Issue 5

Design and synthesis of efficient photocatalysts for hydrogen production via water splitting are of great importance from both theoretical and practical viewpoints. Many metal-based semiconductors have been explored for this purpose in recent decades. Here, for the first time, an entirely carbon-based material, bulk three-dimensionally cross-linked graphene (3DG), has been developed as a photocatalyst for hydrogen production. It exhibits a remarkable hydrogen production rate of 270 μmol·h−1·gcat−1 under full-spectrum light via a hot/free electron emission mechanism. Furthermore, when combined with the widely used semiconductor TiO2 to form a TiO2/3DG composite, it appears to become a more efficient hydrogen production photocatalyst. The composite achieves a production rate of 1, 205 μmol·h−1·gcat−1 under ultraviolet–visible (UV–vis) light and a 7.2% apparent quantum efficiency at 350 nm due to the strong synergetic effects between TiO2 and 3DG.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High activity of hot electrons from bulk 3D graphene materials for efficient photocatalytic hydrogen production

Show Author's information Yanhong Lu1,3,§Bo Ma2,§Yang Yang1,2Erwei Huang2Zhen Ge1,2Tengfei Zhang1,2Suling Zhang3Landong Li2( )Naijia Guan2Yanfeng Ma1,2Yongsheng Chen1,2( )
State Key Laboratory and Institute of Elemento-Organic Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Key Laboratory of Functional Polymer Materials and the Centre of Nanoscale Science and Technology Institute of Polymer Chemistry College of Chemistry Nankai UniversityTianjin 300071 China
School of Material Science and Engineering & National Institute for Advanced Materials Nankai UniversityTianjin 300350 China
School of Chemistry & Material Science Langfang Teachers UniversityLangfang 065000 China

§ These authors contributed equally to this work.

Abstract

Design and synthesis of efficient photocatalysts for hydrogen production via water splitting are of great importance from both theoretical and practical viewpoints. Many metal-based semiconductors have been explored for this purpose in recent decades. Here, for the first time, an entirely carbon-based material, bulk three-dimensionally cross-linked graphene (3DG), has been developed as a photocatalyst for hydrogen production. It exhibits a remarkable hydrogen production rate of 270 μmol·h−1·gcat−1 under full-spectrum light via a hot/free electron emission mechanism. Furthermore, when combined with the widely used semiconductor TiO2 to form a TiO2/3DG composite, it appears to become a more efficient hydrogen production photocatalyst. The composite achieves a production rate of 1, 205 μmol·h−1·gcat−1 under ultraviolet–visible (UV–vis) light and a 7.2% apparent quantum efficiency at 350 nm due to the strong synergetic effects between TiO2 and 3DG.

Keywords: graphene, TiO2, water splitting, hydrogen production, hot electron

References(60)

1

Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O. I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D. et al. Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs. Adv. Funct. Mater. 2014, 24, 372–378.

2

Turner, J. A. A nickel finish protects silicon photoanodes for water splitting. Science 2013, 342, 811–812.

3

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

4

Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 2011, 334, 645–648.

5

Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840.

6

Li, J.-S.; Wang, Y.; Liu, C.-H.; Li, S.-L.; Wang, Y.-G.; Dong, L.-Z.; Dai, Z.-H.; Li, Y.-F.; Lan, Y.-Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

7

Muhich, C. L.; Evanko, B. W.; Weston, K. C.; Lichty, P.; Liang, X. H.; Martinek, J.; Musgrave, C. B.; Weimer, A. W. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science 2013, 341, 540–542.

8

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

9

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

10

Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489–492.

11

Yu, J. G.; Ran, J. R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy Environ. Sci. 2011, 4, 1364–1371.

12

Zhang, J.; Yu, J. G.; Zhang, Y. M.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.

13

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

14

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

15

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

16

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

17

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

18

Liang, Q. H.; Li, Z. L.; Yu, X. L.; Huang, Z.-H.; Kang, F. Y.; Yang, Q.-H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.

19

Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

20

Cui, W.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Activated carbon nanotubes: A highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2014, 50, 9340–9342.

21

Xie, K.; Wu, H. P.; Meng, Y. N.; Lu, K.; Wei, Z. X.; Zhang, Z. Poly(3, 4-dinitrothiophene)/SWCNT composite as a low overpotential hydrogen evolution metal-free catalyst. J. Mater. Chem. A 2015, 3, 78–82.

22

Yeh, T.-F.; Syu, J.-M.; Cheng, C.; Chang, T.-H.; Teng, H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 2010, 20, 2255–2262.

23

Lavorato, C.; Primo, A.; Molinari, R.; Garcia, H. N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chem.—Eur. J. 2014, 20, 187–194.

24

Yeh, T.-F.; Teng, C.-Y.; Chen, S.-J.; Teng, H. Nitrogen- doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297–3303.

25

Latorre-Sánchez, M.; Primo, A.; García, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew. Chem., Int. Ed. 2013, 52, 11813–11816.

26

Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878– 10884.

27

Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10, 577–583.

28

Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578.

29

Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 2015, 137, 604–607.

30

Mateo, D.; Esteve-Adell, I.; Albero, J.; Royo, J. F. S.; Primo, A.; Garcia, H. 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nat. Commun. 2016, 7, 11819.

31

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

32

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

33

Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 2013, 4, 1987.

34

Wu, Y. P.; Yi, N. B.; Huang, L.; Zhang, T. F.; Fang, S. L.; Chang, H. C.; Li, N.; Oh, J.; Lee, J. A.; Kozlov, M. et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero poisson's ratio. Nat. Commun. 2015, 6, 6141.

35

Zhang, T. F.; Chang, H. C.; Wu, Y. P.; Xiao, P. S.; Yi, N. B.; Lu, Y. H.; Ma, Y. F.; Huang, Y.; Zhao, K.; Yan, X.-Q. et al. Macroscopic and direct light propulsion of bulk graphene material. Nat. Photonics 2015, 9, 471–476.

36

Tielrooij, K. J.; Song, J. C. W.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Zurutuza Elorza, A.; Bonn, M.; Levitov, L. S.; Koppens, F. H. L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 2013, 9, 248–252.

37

Zhang, L. H.; Zhu, D.; Nathanson, G. M.; Hamers, R. J. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew. Chem., Int. Ed. 2014, 53, 9746–9750.

38

Matsuishi, S.; Toda, Y.; Miyakawa, M.; Hayashi, K.; Kamiya, T.; Hirano, M.; Tanaka, I.; Hosono, H. High- density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e). Science 2003, 301, 626–629.

39

Lu, Y. H.; Yang, Y.; Zhang, T. F.; Ge, Z.; Chang, H. C.; Xiao, P. S.; Xie, Y. Y.; Hua, L.; Li, Q. Y.; Li, H. Y. et al. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 2016, 10, 10507–10515.

40

Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.-W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.

41

Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

42

Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370.

43

Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

44

Tang, L. H.; Wang, Y.; Li, Y. M.; Feng, H. B.; Lu, J.; Li, J. H. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782–2789.

45

Shen, J. F.; Yan, B.; Shi, M.; Ma, H. W.; Li, N.; Ye, M. X. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 2011, 21, 3415–3421.

46

Huang, Q. W.; Tian, S. Q.; Zeng, D. W.; Wang, X. X.; Song, W. L.; Li, Y. Y.; Xiao, W.; Xie, C. S. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catal. 2013, 3, 1477–1485.

47

Lee, J. S.; You, K. H.; Park, C. B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 2012, 24, 1084–1088.

48

Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852–5855.

49

Ren, R.; Wen, Z. H.; Cui, S. M.; Hou, Y.; Guo, X. R.; Chen, J. H. Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci. Rep. 2015, 5, 10714.

50

Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H.-M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template- free self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.

51

Zhang, X.-Y.; Li, H.-P.; Cui, X.-L.; Lin, Y. H. Graphene/ TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 2010, 20, 2801–2806.

52

Min, S. X.; Wang, F.; Lu, G. X. Graphene-induced spatial charge separation for selective water splitting over TiO2 photocatalyst. Catal. Commun. 2016, 80, 28–32.

53

Mou, Z. G.; Wu, Y. J.; Sun, J. H.; Yang, P.; Du, Y. K.; Lu, C. TiO2 nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2014, 6, 13798–13806.

54

Kim, H.-I.; Kim, S.; Kang, J.-K.; Choi, W. Graphene oxide embedded into TiO2 nanofiber: Effective hybrid photocatalyst for solar conversion. J. Catal. 2014, 309, 49–57.

55

Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.

56

Winzer, T.; Knorr, A.; Malic, E. Carrier multiplication in graphene. Nano Lett. 2010, 10, 4839–4843.

57

Xu, X. X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. S. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595–598.

58

Long, R.; English, N. J.; Prezhdo, O. V. Photo-induced charge separation across the graphene–TiO2 interface is faster than energy losses: A time-domain ab initio analysis. J. Am. Chem. Soc. 2012, 134, 14238–14248.

59

Manga, K. K.; Zhou, Y.; Yan, Y. L.; Loh, K. P. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 2009, 19, 3638–3643.

60

Yan, Y.; Wang, C.; Yan, X.; Xiao, L. S.; He, J. H.; Gu, W.; Shi, W. D. Graphene acting as surface phase junction in anatase–graphene–rutile heterojunction photocatalysts for H2 production from water splitting. J. Phys. Chem. C 2014, 118, 23519–23526.

File
nr-10-5-1662_ESM.pdf (943.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2016
Revised: 21 November 2016
Accepted: 23 November 2016
Published: 27 February 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the Ministry of Science and Technology of China (No. 2016YFA0200200), the National Natural Science Foundation of China (Nos. 51633002, 51472124, 51273093, and 51502125), the Natural Science Foundation of Hebei Province of China (No. E2016408035), and Science Research Project of Langfang Teachers University (No. LSLB201401).

Return