Journal Home > Volume 10 , Issue 6

Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and Al nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/Al surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.


menu
Abstract
Full text
Outline
About this article

Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement

Show Author's information Qiuxiang Zhu1,2Feifei Qin1Junfeng Lu1Zhu Zhu1Haiyan Nan3Zengliang Shi1Zhenhua Ni3Chunxiang Xu1( )
State Key Laboratory of BioelectronicsSchool of Biological Science & Medical EngineeringSoutheast UniversityNanjing210096China
College of Communication and Electronic EngineeringHunan City UniversityYiyang413000China
Department of PhysicsSoutheast UniversityNanjing210096China

Abstract

Collective oscillations of free electrons generate plasmons on the surface of a material. A whispering-gallery microcavity effectively confines the light field on its surface based on the total reflection from its internal wall. When these two kinds of electromagnetic waves meet each other, the stimulated emissions from an individual ZnO microrod were enhanced more than 50-fold and the threshold was reduced after the whispering-gallery microcavity was coated with a monolayer of graphene and Al nanoparticles. The improvement of the lasing performance was attributed to the synergistic energy coupling of the graphene/Al surface plasmons with ZnO excitons. The lasing characteristics and the coupling mechanism were investigated systematically.

Keywords: graphene, ZnO microrod, surface plasmons, Al nanoparticles, energy coupling

References(35)

1

Zu, P.; Tang, Z. K.; Wong, G. K. L.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 1997, 103, 459–463.

2

Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72, 3270–3272.

3

Lin, Y.; Li, J. T.; Xu, C. X.; Fan, X. M.; Wang, B. P. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107.

4

Zhang, S. G.; Zhang, X. W.; Yin, Z. G.; Wang, J. X.; Dong, J. J.; Gao, H. L.; Si, F. T.; Sun, S. S.; Tao, Y. Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes. Appl. Phys. Lett. 2011, 99, 181116.

5

Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.

6

Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Plasmon-enhanced whispering gallery mode lasing from hexagonal Al/ZnO microcavity. ACS Photonics 2015, 2, 73–77.

7

Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F. Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.

8

Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391.

9

Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S. -H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.

10

Despoja, V.; Novko, D.; Dekanić, K.; Šunjić, M.; Marušić, L. Two-dimensional and π plasmon spectra in pristine and doped graphene. Phys. Rev. B 2013, 87, 075447.

11

Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.

12

Li, J. T.; Xu, C. X.; Nan, H. Y.; Jiang, M. M.; Gao, G. Y.; Lin, Y.; Dai, J.; Zhu, G. Y.; Ni, Z. H.; Wang, S. F. et al. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS Appl. Mater. Interfaces 2014, 6, 10469–10475.

13

Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.

14

Liu, R.; Fu, X. -W.; Meng, J.; Bie, Y. -Q.; Yu, D. -P.; Liao, Z. -M. Graphene plasmon enhanced photoluminescence in ZnO microwires. Nanoscale 2013, 5, 5294–5298.

15

West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.

16

Xu, C. X.; Sun, X. W.; Chen, B. J. Field emission from gallium-doped zinc oxide nanofiber array. Appl. Phys. Lett. 2004, 84, 1540–1542.

17

Dai, J.; Xu, C. X.; Zheng, K.; Lv, C. G.; Cui, Y. P. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009, 95, 241110.

18

Zhu, G. D.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle. Appl. Phys. Lett. 2009, 94, 051106.

19

Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

20

Berman, O. L.; Kezerashvili, R. Y.; Lozovik, Y. E. Graphene nanoribbon based spaser. Phys. Rev. B 2013, 88, 235424.

21

Rupasinghe, C.; Rukhlenko, I. D.; Premaratne, M. Spaser made of graphene and carbon nanotubes. ACS Nano 2014, 8, 2431–2438.

22

Xu, C. K.; Xu, G. D.; Liu, Y. K.; Wang, G. H. A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 2002, 122, 175–179.

23

Xu, C. X.; Sun, X. W. Characteristics and growth mechanism of ZnO whiskers fabricated by vapor phase transport. Jpn. J. Appl. Phys. 2003, 42, 4949.

24

Xu, C. X.; Zhu, G. P.; Li, X.; Yang, Y.; Tan, S. T.; Sun, X. W.; Lincoln, C.; Smith, T. A. Growth and spectral analysis of ZnO nanotubes. J. Appl. Phys. 2008, 103, 094303.

25

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.

26

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

27

Dai, J.; Xu, C. X.; Nakamura, T.; Wang, Y. Y.; Li, J. T.; Lin, Y. Electron–hole plasma induced band gap renormalization in ZnO microlaser cavities. Opt. Express 2014, 22, 28831– 28837.

28

Dai, J.; Xu, C. X.; Wu, P.; Guo, J. Y.; Li, Z. H.; Shi, Z. L. Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature. Appl. Phys. Lett. 2010, 97, 011101.

29

Arai, N.; Takeda, J.; Ko, H. -J.; Yao, T. Dynamics of high-density excitons and electron–hole plasma in ZnO epitaxial thin films. J. Lumin. 2006, 119-120, 346–349.

30

Mitsubori, S.; Katayama, I.; Lee, S. H.; Yao, T.; Takeda, J. Ultrafast lasing due to electron–hole plasma in ZnO nano-multipods. J. Phys. : Condens. Matter 2009, 21, 064211.

31

Luo, X. G.; Qiu, T.; Lu, W. B.; Ni, Z. H. Plasmons in graphene: Recent progress and applications. Mater. Sci. Eng. R: Rep. 2013, 74, 351–376.

32

Jiang, M. M.; Li, J. T.; Xu, C. X.; Wang, S. P.; Shan, C. X.; Xuan, B.; Ning, Y. Q.; Shen, D. Z. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Opt. Express 2014, 22, 23836–23850.

33

Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733.

34

Skriver, H. L.; Rosengaard, N. M. Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46, 7157–7168.

35

Wang, J.; Zheng, C. C.; Ning, J. Q.; Zhang, L. X.; Li, W.; Ni, Z. H.; Chen, Y.; Wang, J. N.; Xu, S. J. Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure. Sci. Rep. 2015, 5, 7687.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 July 2016
Revised: 21 November 2016
Accepted: 26 November 2016
Published: 27 February 2017
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors would like to thank Prof. Zhenhua Ni and Dr. Haiyan Nan from Department of Physics, Southeast University for their warm help in the material synthesis. This work was supported by the National Basic Research Program of China (No. 2013CB932903), National Natural Science Foundation of China (Nos. 61475035 and 61275054), the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. 2011KFJ004), the General Project of Education Department of Hunan Province (No. 15C0251), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Return