Journal Home > Volume 10 , Issue 6

In spintronics, it is highly desirable to find new materials that can simultaneously possess complete spin-polarization, high-speed conduction electrons, large Curie temperature, and robust ferromagnetic ground states. Using first-principles calculations, we demonstrate that the stable YN2 monolayer with octahedral coordination is a novel p-state Dirac half metal (DHM), which not only has a fully spin-polarized Dirac state, but also the highest Fermi velocity (3.74 × 105 m/s) of the DHMs reported to date. In addition, its half-metallic gap of 1.53 eV is large enough to prevent the spin-flip transition. Because of the strong nonlocal p orbitals of N atoms (N-p) direct exchange interaction, the Curie temperature reaches over 332 K. Moreover, its ferromagnetic ground state can be well preserved under carrier doping or external strain. Therefore, the YN2 monolayer is a promising DHM for high-speed spintronic devices and would lead to new opportunities in designing other p-state DHMs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics

Show Author's information Zhifeng Liu1,2Junyan Liu1Jijun Zhao2,3( )
School of Physical Science and TechnologyInner Mongolia UniversityHohhot010021China
Beijing Computational Science Research CenterBeijing100094China
Key Laboratory of Materials Modification by LaserIon and Electron BeamsDalian University of TechnologyDalian116024China

Abstract

In spintronics, it is highly desirable to find new materials that can simultaneously possess complete spin-polarization, high-speed conduction electrons, large Curie temperature, and robust ferromagnetic ground states. Using first-principles calculations, we demonstrate that the stable YN2 monolayer with octahedral coordination is a novel p-state Dirac half metal (DHM), which not only has a fully spin-polarized Dirac state, but also the highest Fermi velocity (3.74 × 105 m/s) of the DHMs reported to date. In addition, its half-metallic gap of 1.53 eV is large enough to prevent the spin-flip transition. Because of the strong nonlocal p orbitals of N atoms (N-p) direct exchange interaction, the Curie temperature reaches over 332 K. Moreover, its ferromagnetic ground state can be well preserved under carrier doping or external strain. Therefore, the YN2 monolayer is a promising DHM for high-speed spintronic devices and would lead to new opportunities in designing other p-state DHMs.

Keywords: spintronics, ferromagnetism, Dirac half metal, YN2 monolayer

References(49)

1

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

2

Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

3

Awschalom, D. D.; Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 2007, 3, 153–159.

4

Li, X. X.; Yang, J. L. First-principles design of spintronics materials. Natl. Sci. Rev. 2016, 3, 365–381.

5

Felser, C.; Fecher, G. H.; Balke, B. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem., Int. Ed. 2007, 46, 668–699.

6

Wang, X. L. Proposal for a new class of materials: Spin gapless semiconductors. Phys. Rev. Lett. 2008, 100, 156404.

7

Ishizuka, H.; Motome, Y. Dirac half-metal in a triangular ferrimagnet. Phys. Rev. Lett. 2012, 109, 237207.

8

Li, Y. C.; West, D.; Huang, H. Q.; Li, J.; Zhang, S. B.; Duan, W. H. Theory of the Dirac half metal and quantum anomalous hall effect in Mn-intercalated epitaxial graphene. Phys. Rev. B 2015, 92, 201403(R).

9

Cai, T. Y.; Li, X.; Wang, F.; Ju, S.; Feng, J.; Gong, C. D. Single-spin Dirac fermion and chern insulator based on simple oxides. Nano Lett. 2015, 15, 6434–6439.

10

Wei, L.; Zhang, X. M.; Zhao, M. W. Spin-polarized Dirac cones and topological nontriviality in a metal-organic framework Ni2C24S6H12. Phys. Chem. Chem. Phys. 2016, 18, 8059–8064.

11

He, J. J.; Ma, S. Y.; Lyu, P.; Nachtigall, P. Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C 2016, 4, 2518–2526.

12

Zhang, X. M.; Wang, A. Z.; Zhao, M. W. Spin-gapless semiconducting graphitic carbon nitrides: A theoretical design from first principles. Carbon 2015, 84, 1–8.

13

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

14

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

15

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

16

Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.

17

Zhang, L. Z.; Wang, Z. F.; Du, S. X.; Gao, H. J.; Liu, F. Prediction of a Dirac state in monolayer TiB2. Phys. Rev. B 2014, 90, 161402(R).

18

Zhang, S. L.; Hu, Y. H.; Hu, Z. Y.; Cai, B.; Zeng, H. B. Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 2015, 107, 022102.

19

Wang, S. M.; Ge, H.; Sun, S. L.; Zhang, J. Z.; Liu, F. M.; Wen, X. D.; Yu, X. H.; Wang, L. P.; Zhang, Y.; Xu, H. W. et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 2015, 137, 4815–4822.

20

Wu, F.; Huang, C. X.; Wu, H. P.; Lee, C.; Deng, K. M.; Kan, E. J.; Jena, P. Atomically thin transition-metal dinitrides: High-temperature ferromagnetism and half-metallicity. Nano Lett. 2015, 15, 8277–8281.

21

Wang, Y.; Wang, S. -S.; Lu, Y. H.; Jiang, J. Z.; Yang, S. A. Strain-induced isostructural and magnetic phase transitions in monolayer MoN2. Nano Lett. 2016, 16, 4576–4582.

22

Wu, H. P.; Qian, Y.; Lu, R. F.; Tan, W. S. A Theoretical study on the electronic property of a new two-dimensional material molybdenum dinitride. Phys. Lett. A 2016, 380, 768–772.

23

Wang, Y. L.; Ding, Y. The hydrogen-induced structural stability and promising electronic properties of molybdenum and tungsten dinitride nanosheets: A first-principles study. J. Mater. Chem. C 2016, 4, 7485–7493.

24

Zhang, C. Z.; Sun, Q. A Honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility. J. Phys. Chem. Lett. 2016, 7, 2664–2670.

25

Zhang, S. H.; Zhou, J.; Wang, Q.; Jena, P. Beyond graphitic carbon nitride: Nitrogen-rich penta-CN2 sheet. J. Phys. Chem. C 2016, 120, 3993–3998.

26

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

27

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

28

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

29

Ataca, C.; Şahin, H.; Ciraci, S. Stable, Single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb- like structure. J. Phys. Chem. C 2012, 116, 8983–8999.

30

Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, 1954.

31

Du, G. D.; Guo, Z. P.; Wang, S. Q.; Zeng, R.; Chen, Z. X.; Liu, H. K. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 2010, 46, 1106–1108.

32

Crowhurst, J. C.; Goncharov, A. F.; Sadigh, B.; Evans, C. L.; Morrall, P. G.; Ferreira, J. L.; Nelson, A. J. Synthesis and characterization of the nitrides of platinum and iridium. Science 2006, 311, 1275–1278.

33

Young, A. F.; Sanloup, C.; Gregoryanz, E.; Scandolo, S.; Hemley, R. J.; Mao, H. -K. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 2006, 96, 155501.

34

Kawamura, F.; Yusa, H.; Taniguchi, T. Synthesis of rhenium nitride crystals with MoS2 structure. Appl. Phys. Lett. 2012, 100, 251910.

35

Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 2004, 69, 155406.

36

Björkman, T.; Gulans, A.; Krasheninnikov, A. V.; Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 2012, 108, 235502.

37

Zhao, S. T.; Li, Z. Y.; Yang, J. L. Obtaining two-dimensional electron gas in free space without resorting to electron doping: An electride based design. J. Am. Chem. Soc. 2014, 136, 13313–13318.

38

Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 2012, 108, 086804.

39

Li, Y. C.; Chen, P. C.; Zhou, G.; Li, J.; Wu, J.; Gu, B. L.; Zhang, S. B.; Duan, W. H. Dirac fermions in strongly bound graphene systems. Phys. Rev. Lett. 2012, 109, 206802.

40

Hasegawa, Y.; Konno, R.; Nakano, H.; Kohmoto, M. Zero modes of tight-binding electrons on the honeycomb lattice. Phys. Rev. B 2006, 74, 033413.

41

Wang, Y. L.; Ding, Y. Strain-induced self-doping in silicene and germanene from first-principles. Solid State Comm. 2013, 155, 6–11.

42

Zhou, J.; Sun, Q. Magnetism of phthalocyanine-based organometallic single porous sheet. J. Am. Chem. Soc. 2011, 133, 15113–15119.

43

Li, X. X.; Wu, X. J.; Yang, J. L. Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping. J. Am. Chem. Soc. 2014, 136, 11065–11069.

44

Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a Kagome spin lattice: The case of a manganese bis- dithiolene monolayer. Nanoscale 2013, 5, 10404–10408.

45

Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382–3386.

46

Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt Rinehart/Winston: New York, 1976.

47

Liu, J. Y.; Sun, Q. Enhanced ferromagnetism in a Mn3C12N12H12 sheet. ChemPhysChem 2015, 16, 614–620.

48

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene- like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

49

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

File
nr-10-6-1972_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 September 2016
Revised: 16 November 2016
Accepted: 20 November 2016
Published: 10 January 2017
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work is currently supported by the National Natural Science Foundation of China (Nos. 11547260, 11134005, 11574040, and 11604165), the Scientific Research Project of Universities in the Inner Mongolia Autonomous Region (No. NJZY006), Natural Science Foundation of Inner Mongolia (No. 2016BS0104) and the 2014 Startup Project for the Introducing Doctor of Inner Mongolia University (No. 21200-5145135).

Return