Journal Home > Volume 10 , Issue 6

Ultrathin two-dimensional (2D) nanomaterials offer unique advantages compared to their counterparts in other dimensionalities. O-vacancies in such materials allow rapid electron diffusion. Carbon doping often improves the electric conductivity. Considering these merits, the WO3-x/C ultrathin 2D nanomaterial is expected to exhibit excellent electrochemical performance in Li-ion batteries. Here, ultrathin WO3-x/C nanosheets were prepared via an acid-assisted one-pot process. The as-prepared WO3-x/C ultrathin nanosheets showed good electrochemical performance, with an initial discharge capacity of 1, 866 mA·h·g-1 at a current density of 200 mA·g-1. After 100 cycles, the discharge and charge capacities were 662 and 661 mA·h·g-1, respectively. The reversible capacity of the WO3-x/C ultrathin nanosheets exceeded those of WO3 and WO3-x nanosheets. The electrochemical testing results demonstrated that WO3-x/C ultrathin nanosheets are promising alternative anode materials for Li-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Preparation and electrochemical characterization of ultrathin WO3-x/C nanosheets as anode materials in lithium ion batteries

Show Author's information Keyan Bao1,2,§Wutao Mao1,§Guangyin Liu1Liqun Ye1Haiquan Xie1Shufang Ji2Dingsheng Wang2Chen Chen2Yadong Li2
College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang 473061 China
Department of Chemistry Tsinghua UniversityBeijing 100084 China

§ These authors contributed equally to this work.

Abstract

Ultrathin two-dimensional (2D) nanomaterials offer unique advantages compared to their counterparts in other dimensionalities. O-vacancies in such materials allow rapid electron diffusion. Carbon doping often improves the electric conductivity. Considering these merits, the WO3-x/C ultrathin 2D nanomaterial is expected to exhibit excellent electrochemical performance in Li-ion batteries. Here, ultrathin WO3-x/C nanosheets were prepared via an acid-assisted one-pot process. The as-prepared WO3-x/C ultrathin nanosheets showed good electrochemical performance, with an initial discharge capacity of 1, 866 mA·h·g-1 at a current density of 200 mA·g-1. After 100 cycles, the discharge and charge capacities were 662 and 661 mA·h·g-1, respectively. The reversible capacity of the WO3-x/C ultrathin nanosheets exceeded those of WO3 and WO3-x nanosheets. The electrochemical testing results demonstrated that WO3-x/C ultrathin nanosheets are promising alternative anode materials for Li-ion batteries.

Keywords: lithium-ion batteries, anodes, WO3-x/C, one-pot process, O-vacancies

References(42)

1

David, L.; Bhandavat, R.; Barrera, U.; Singh, G. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat. Commun. 2016, 7, 10998.

2

Bi, W. T.; Hu, Z. P.; Li, X. G.; Wu, C. Z.; Wu, J. C.; Wu, Y. B.; Xie, Y. Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors. Nano Res. 2015, 8, 193-200.

3

Kim, H.; Lee, S.; Cho, H.; Kim, J.; Lee, J.; Park, S.; Joo, S. H.; Kim, S. H.; Cho, Y. G.; Song, H. K. et al. Enhancing interfacial bonding between anisotropically oriented grains using a glue-nanofiller for advanced Li-ion battery cathode. Adv. Mater. 2016, 28, 4705-4712.

4

Li, J. C.; Zhang, Q. L.; Xiao, X. C.; Cheng, Y. T.; Liang, C. D.; Dudney, N. J. Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 13732- 13735.

5

Li, L. S.; Jacobs, R.; Gao, P.; Gan, L. Y.; Wang, F.; Morgan, D.; Jin, S. Origins of large voltage hysteresis in high-energy- density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 2016, 138, 2838-2848.

6

Ma, T.; Zhao, Q.; Wang, J. B.; Pan, Z.; Chen, J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem., Int. Ed. 2016, 55, 6428-6432.

7

Wang, J. H.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032.

8

Han, J. H.; Lee, S.; Yoo, D.; Lee, J. H.; Jeong, S.; Kim, J. G.; Cheon, J. Unveiling chemical reactivity and structural transformation of two-dimensional layered nanocrystals. J. Am. Chem. Soc. 2013, 135, 3736-3739.

9

Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303-3323.

10

Sun, X.; Deng, H. T.; Zhu, W. G.; Yu, Z.; Wu, C. Z.; Xie, Y. Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for Ullmann couplings. Angew. Chem., Int. Ed. 2016, 55, 1704-1709.

11

Yataka, Y.; Sawada, T.; Serizawa, T. Enzymatic synthesis and post-functionalization of two-dimensional crystalline cellulose oligomers with surface-reactive groups. Chem. Commun. 2015, 51, 12525-12528.

12

Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3039.

13

Liu, B.; Zhang, J. G.; Shen, G. Z. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today 2016, 11, 82-97.

14

Rahman, M. M.; Sadek, A. Z.; Sultana, I.; Srikanth, M.; Dai, X. J.; Field, M. R.; McCulloch, D. G.; Ponraj, B.; Chen, Y. Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a high- performance lithium-ion-battery cathode. Nano Res. 2015, 8, 3591-3603.

15

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

16

Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self- templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868-1872.

17

Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376-387.

18

Xie, M.; Luo, R.; Lu, J.; Chen, R. J.; Wu, F.; Wang, X. M.; Zhan, C.; Wu, H. M.; Albishri, H. M.; Al-Bogami, A. S. et al. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination. ACS App. Mater. Interfaces 2014, 6, 17176-17183.

19

Lee, J.; Jo, C.; Park, B.; Hwang, W.; Lee, H. I.; Yoon, S.; Lee, J. Simple fabrication of flexible electrodes with high metal-oxide content: Electrospun reduced tungsten oxide/ carbon nanofibers for lithium ion battery applications. Nanoscale 2014, 6, 10147-10155.

20

He, J.; Liu, H. L.; Xu, B.; Wang, X. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts. Small 2015, 11, 1144-1149.

21

Sadakane, M.; Sasaki, K.; Kunioku, H.; Ohtani, B.; Abe, R.; Ueda, W. Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J. Mater. Chem. 2010, 20, 1811-1818.

22

Li, P.; Li, X.; Zhao, Z. Y.; Wang, M. S.; Fox, T.; Zhang, Q.; Zhou, Y. Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries. Electrochim. Acta 2016, 192, 148-157.

23

Yin, J. F.; Cao, H. Q.; Zhang, J. X.; Qu, M. Z.; Zhou, Z. F. Synthesis and applications of γ-tungsten oxide hierarchical nanostructures. Cryst. Growth Des. 2013, 13, 759-769.

24

Ha, J. H.; Muralidharan, P.; Kim, D. K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. J. Alloys Compd. 2009, 475, 446-451.

25

Szilágyi, I. M.; Wang, L. S.; Gouma, P. I.; Balázsi, C.; Madarász, J.; Pokol, G. Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater. Res. Bull. 2009, 44, 505-508.

26

Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano- ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435-441.

27

Vankova, S.; Zanarini, S.; Amici, J.; Cámara, F.; Arletti, R.; Bodoardo, S.; Penazzi, N. WO3 nanorolls self-assembled as thin films by hydrothermal synthesis. Nanoscale 2015, 7, 7174-7177.

28

Gu, X. Y.; Wu, F. L.; Lei, B. B.; Wang, J.; Chen, Z. L.; Xie, K.; Song, Y.; Sun, D. L.; Sun, L. X.; Zhou, H. Y. et al. Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries. J. Power Sources 2016, 320, 231-238.

29

Liu, Y.; Jiao, Y.; Zhou, H. Y.; Yu, X.; Qu, F. Y.; Wu, X. Rational design of WO3 nanostructures as the anode materials for lithium-ion batteries with enhanced electrochemical performance. Nano-Micro Lett. 2015, 7, 12-16.

30

Li, W. J.; Fu, Z. W. Nanostructured WO3 thin film as a new anode material for lithium-ion batteries. Appl. Surf. Sci. 2010, 256, 2447-2452.

31

Lucovsky, G.; Zeller, D.; Whitten, J. L. O-vacancies in transition metal (TM) oxides: Coordination and local site symmetry of transition and negative ion states in TM2O3 and TMO2 oxides. Microelectron. Eng. 2011, 88, 1471-1474.

32

Shoko, E.; Smith, M. F.; McKenzie, R. H. Charge distribution near bulk oxygen vacancies in cerium oxides. J. Phys. : Condens. Matter 2010, 22, 223201.

33

Smith, A. M.; Kast, M. G.; Nail, B. A.; Aloni, S.; Boettcher, S. W. A planar-defect-driven growth mechanism of oxygen deficient tungsten oxide nanowires. J. Mater. Chem. A 2014, 2, 6121-6129.

34

Zhou, H. W.; Shi, Y. T.; Dong, Q. S.; Wang, Y. X.; Zhu, C.; Wang, L.; Wang, N.; Wei, Y.; Tao, S. Y.; Ma, T. L. Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 4347-4354.

35

Sun, Y.; Wang, W.; Qin, J. W.; Zhao, D.; Mao, B. G.; Xiao, Y.; Cao, M. H. Oxygen vacancy-rich mesoporous W18O49 nanobelts with ultrahigh initial Coulombic efficiency toward high-performance lithium storage. Electrochim. Acta 2016, 187, 329-339.

36

Pervez, S. A.; Kim, D.; Doh, C. H.; Farooq, U.; Choi, H. Y.; Choi, J. H. Anodic WO3 mesosponge@carbon: A novel binder-less electrode for advanced energy storage devices. ACS App. Mater. Interfaces 2015, 7, 7635-7643.

37

Zeng, F. Y.; Ren, Y. F.; Chen, L.; Yang, Y.; Li, Q. L.; Gu, G. Hierarchical sandwich-type tungsten trioxide nanoplatelets/graphene anode for high-performance lithium-ion batteries with long cycle life. Electrochim. Acta 2016, 190, 964-971.

38

Yu, M. P.; Sun, H. T.; Sun, X.; Lu, F. Y.; Hu, T.; Wang, G. K.; Qiu, H.; Lian, J. 3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. Mater. Lett. 2013, 108, 29-32.

39

Liu, F.; Kim, J. G.; Lee, C. W.; Im, J. S. A mesoporous WO3-X/graphene composite as a high-performance Li-ion battery anode. Appl. Surf. Sci. 2014, 316, 604-609.

40

Li, H. B.; Kang, W. J.; Yu, Y.; Liu, J. F.; Qian, Y. T. Synthesis of bamboo-structured carbon nanotubes and honeycomb carbons with long-cycle Li-storage performance by in situ generated zinc oxide. Carbon 2012, 50, 4787-4793.

41

Khan, M. E.; Khan, M. M.; Cho, M. H. Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv. 2016, 6, 20824-20833.

42

Yan, J. Q.; Wang, T.; Wu, G. J.; Dai, W. L.; Guan, N. J.; Li, L. D.; Gong, J. L. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 2015, 27, 1580-1586.

File
nr-10-6-1903_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2016
Revised: 14 November 2016
Accepted: 15 November 2016
Published: 17 December 2016
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgement

This work was supported by the China Ministry of Science and Technology (No. 2016YFA0202801), the National Natural Science Foundation of China (Nos. 21573119, 21590792, 21521091, 21131004, 21390393, U1463202, and U1404505) and the Program for Innovative Talent in University of Henan Province (No. 16HASTIT010).

Return