Journal Home > Volume 10 , Issue 6

Single-walled carbon nanotube (SWCNT) films with a high density exhibit broad functionality and great potential in nanodevices, as SWCNTs can be either metallic or semiconducting in behavior. The films greatly benefit from characterization technologies that can efficiently identify and group SWCNTs based on metallic or semiconducting natures with high spatial resolution. Here, we developed a facile imaging technique using scanning electron microscopy (SEM) to discriminate between semiconducting and metallic SWCNTs based on black and white colors. The average width of the single-SWCNT image was reduced to ~9 nm, ~1/5 of previous imaging results. These achievements were attributed to reduced surface charging on the SiO2/Si substrate under enhanced accelerating voltages. With this identification technique, a CNT transistor with an on/off ratio of > 105 was fabricated by identifying and etching out the white metallic SWCNTs. This improved SEM imaging technique can be widely applied in evaluating the selective growth and sorting of SWCNTs.


menu
Abstract
Full text
Outline
About this article

Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM

Show Author's information Dongqi Li1Yang Wei1( )Jin Zhang1Jiangtao Wang1Yinghong Lin3Peng Liu1Shoushan Fan1,2Kaili Jiang1,2( )
State Key Laboratory of Low-Dimensional Quantum Physics Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center Tsinghua University Beijing 100084 China
Collaborative Innovation Center of Quantum Matter Beijing 100084 China
FEI Company, Building No. 8, No. 399 Shengxia Road, Pudong Shanghai 201210 China

Abstract

Single-walled carbon nanotube (SWCNT) films with a high density exhibit broad functionality and great potential in nanodevices, as SWCNTs can be either metallic or semiconducting in behavior. The films greatly benefit from characterization technologies that can efficiently identify and group SWCNTs based on metallic or semiconducting natures with high spatial resolution. Here, we developed a facile imaging technique using scanning electron microscopy (SEM) to discriminate between semiconducting and metallic SWCNTs based on black and white colors. The average width of the single-SWCNT image was reduced to ~9 nm, ~1/5 of previous imaging results. These achievements were attributed to reduced surface charging on the SiO2/Si substrate under enhanced accelerating voltages. With this identification technique, a CNT transistor with an on/off ratio of > 105 was fabricated by identifying and etching out the white metallic SWCNTs. This improved SEM imaging technique can be widely applied in evaluating the selective growth and sorting of SWCNTs.

Keywords: transistor, single-walled carbon nanotube, scanning electron microscopy, surface charging

References(26)

1

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605-615.

2

Scarselli, M.; Castrucci, P.; De Crescenzi, M. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. : Condens. Matter 2012, 24, 313202.

3

Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727-1752.

4

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526-530.

5

Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730-8745.

6

Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. H. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067-1071.

7

Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341-350.

8

Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Peng, L. M. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small 2013, 9, 1225-1236.

9

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.

10

Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603-3607.

11

Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35-39.

12

Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

13

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273-1276.

14

Kim, K. H.; Vural, M.; Islam, M. F. Single-walled carbon nanotube aerogel-based elastic conductors. Adv. Mater. 2011, 23, 2865-2869.

15

Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447-2449.

16

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room- temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49-52.

17

Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758-762.

18

Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett. 2001, 86, 1118-1121.

19

Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095-4101.

20

He, Y. J.; Zhang, J.; Li, D. Q.; Wang, J. T.; Wu, Q.; Wei, Y.; Zhang, L.; Wang, J. P.; Liu, P.; Li, Q. Q. et al. Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the schottky barriers. Nano Lett. 2013, 13, 5556-5562.

21

Vijayaraghavan, A.; Blatt, S.; Marquardt, C.; Dehm, S.; Wahi, R.; Hennrich, F.; Krupke, R. Imaging electronic structure of carbon nanotubes by voltage-contrast scanning electron microscopy. Nano Res. 2008, 1, 321-332.

22

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single- walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230-236.

23

Seiler, H. Secondary electron emission in the scanning microscope. J. Appl. Phys. 1983, 54, R1-R18.

24

Cazaux, J. Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 1986, 59, 1418-1430.

25

Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612-12613.

26

Liu, P.; Sun, Q.; Zhu, F.; Liu, K.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S. Measuring the work function of carbon nanotubes with thermionic method. Nano Lett. 2008, 8, 647-651.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 September 2016
Accepted: 15 November 2016
Published: 19 December 2016
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2012CB932301), and the National Natural Science Foundation of China (Nos. 51472142 and 51102147).

Return