Journal Home > Volume 10 , Issue 6

Graphene is being actively explored as a candidate material for flexible and stretchable devices. However, the development of graphene-based flexible photonic devices, i.e. photodetectors, is hindered by the low absorbance of the single layer of carbon atoms. Recently, van der Waals bonded carbon nanotube and graphene hybrid films have demonstrated excellent photoresponsivity, and the use of vein-like carbon nanotube networks resulted in significantly higher mechanical strength. Here, we report for the first time, a flexible photodetector with a high photoresponsivity of ~ 51 A/W and a fast response time of ~ 40 ms over the visible range, revealing the unique potential of this emerging all-carbon hybrid films for flexible devices. In addition, the device exhibits good robustness against repetitive bending, suggesting its applicability in large-area matrix-array flexible photodetectors.


menu
Abstract
Full text
Outline
About this article

Graphene-carbon nanotube hybrid films for high- performance flexible photodetectors

Show Author's information Yujie LiuYuanda LiuShuchao QinYongbing XuRong ZhangFengqiu Wang( )
School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

Abstract

Graphene is being actively explored as a candidate material for flexible and stretchable devices. However, the development of graphene-based flexible photonic devices, i.e. photodetectors, is hindered by the low absorbance of the single layer of carbon atoms. Recently, van der Waals bonded carbon nanotube and graphene hybrid films have demonstrated excellent photoresponsivity, and the use of vein-like carbon nanotube networks resulted in significantly higher mechanical strength. Here, we report for the first time, a flexible photodetector with a high photoresponsivity of ~ 51 A/W and a fast response time of ~ 40 ms over the visible range, revealing the unique potential of this emerging all-carbon hybrid films for flexible devices. In addition, the device exhibits good robustness against repetitive bending, suggesting its applicability in large-area matrix-array flexible photodetectors.

Keywords: graphene, carbon nanotube, van der Waals heterostructures, flexible photodetector

References(48)

1

Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341-350.

2

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611-622.

3

Meunier, V.; Souza Filho, A. G.; Barros, E. B.; Dresselhaus, M. S. Physical properties of low-dimensional sp2-based carbon nanostructures. Rev. Mod. Phys. 2016, 88, 025005.

4

Itkis, M. E.; Niyogi, S.; Meng, M. E.; Hamon, M. A.; Hu, H.; Haddon, R. C. Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes. Nano Lett. 2002, 2, 155-159.

5

Falvo, M. R.; Clary, G. J.; Taylor, R. M., 2nd.; Chi, V.; Brooks, F. P., Jr.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582-584.

6

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

7

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273-1276.

8

Zhang, X. B.; Yu, Z. B.; Wang, C.; Zarrouk, D.; Seo, J. W. T.; Cheng, J. C.; Buchan, A. D.; Takei, K.; Zhao, Y.; Ager, J. W. et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983.

9

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

10

van der Zande, A. M.; Barton, R. A.; Alden, J. S.; Ruiz-Vargas, C. S.; Whitney, W. S.; Pham, P. H. Q.; Park, J.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Large-scale arrays of single-layer graphene resonators. Nano Lett. 2010, 10, 4869-4873.

11

Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35-39.

12

Buldum, A.; Lu, J. P. Contact resistance between carbon nanotubes. Phys. Rev. B 2001, 63, 161403.

13

Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890-3895.

14

Lyons, P. E.; De, S.; Blighe, F.; Nicolosi, V.; Pereira, L. F. C.; Ferreira, M. S.; Coleman, J. N. The relationship between network morphology and conductivity in nanotube films. J. Appl. Phys. 2008, 104, 044302.

15

Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145-2147.

16

Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single- walled carbon nanotube films. Science 2006, 312, 413-416.

17

Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.

18

Koppens, F. H. L.; Mueller, T.; Avouris, P., Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

19

Lv, R. T.; Cruz-Silva, E.; Terrones, M. Building complex hybrid carbon architectures by covalent interconnections: Graphene-nanotube hybrids and more. ACS Nano 2014, 8, 4061-4069.

20

Yan, Z.; Peng, Z. W.; Casillas, G.; Lin, J.; Xiang, C. S.; Zhou, H. Q.; Yang, Y.; Ruan, G. D.; Raji,A.-R. O.; Samuel, E. L. G. et al. Rebar graphene. ACS Nano 2014, 8, 5061-5068.

21

Li, X. L.; Sha, J. W.; Lee, S. K.; Li, Y. L.; Ji, Y. S.; Zhao, Y. J.; Tour, J. M. Rivet graphene. ACS Nano 2016, 10, 7307-7313.

22

Lin, X. Y.; Liu, P.; Wei, Y.; Li, Q. Q.; Wang, J. P.; Wu, Y.; Feng, C.; Zhang, L. N.; Fan, S. S.; Jiang, K. L. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun. 2013, 4, 2920.

23

Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589.

24

Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 2016, 26, 2078-2084.

25

Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.

26

Liu, Y. D.; Wang, F. Q.; Liu, Y. J.; Wang, X. Z.; Xu, Y. B.; Zhang, R. Charge transfer at carbon nanotube-graphene van der Waals heterojunctions. Nanoscale 2016, 8, 12883-12886.

27

Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675-684.

28

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

29

Wang, K.; Wu, H. P.; Meng, Y. N.; Zhang, Y. J.; Wei, Z. X. Integrated energy storage and electrochromic function in one flexible device: An energy storage smart window. Energy Environ. Sci. 2012, 5, 8384-8389.

30

Yeh, M. H.; Lin, L.; Yang,P.-K.; Wang, Z. L. Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 2015, 9, 4757-4765.

31

Kim,D.-H.; Lu, N. S.; Ma, R.; Kim,Y.-S.; Kim,R.-H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.

32

Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. T. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 2015, 3, 2547-2551.

33

Nathan, A.; Ahnood, A.; Cole, M. T.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A.; Haque, S. et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486-1517.

34

Kholmanov, I. N.; Magnuson, C. W.; Piner, R.; Kim, J. Y.; Aliev, A. E.; Tan, C.; Kim, T. Y.; Zakhidov, A. A.; Sberveglieri, G.; Baughman, R. H. et al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater. 2015, 27, 3053-3059.

35

Xiao, L.; Ma, H.; Liu, J. K.; Zhao, W.; Jia, Y.; Zhao, Q.; Liu, K.; Wu, Y.; Wei, Y.; Fan, S. S. et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films. Nano Lett. 2015, 15, 8365-8370.

36

Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.

37

Sun, Z. H.; Chang, H. X. Graphene and graphene-like two- dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156.

38

Liu, Y. L.; Yu, C. C.; Lin, K. T.; Yang, T. C.; Wang, E. Y.; Chen, H. L.; Chen, L. C.; Chen, K. H. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction. ACS Nano 2015, 9, 5093-5103.

39

Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Romaguera, V. S.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheet- based inks. Nano Lett. 2014, 14, 3987-3992.

40

Finn, D. J.; Lotya, M.; Cunningham, G.; Smith, R. J.; McCloskey, D.; Donegan, J. F.; Coleman, J. N. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2014, 2, 925-932.

41

Amani, M.; Burke, R. A.; Proie, R. M.; Dubey, M. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 2015, 26, 115202.

42

De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252-8262.

43

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.

44

Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. N. Large-area, transparent, and flexible infrared photodetector fabricated using p-n junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702-3708.

45

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878-5883.

46

Son, D. I.; Yang, H. Y.; Kim, T. W.; Park, W. I. Transparent and flexible ultraviolet photodetectors based on colloidal ZnO quantum dot/graphene nanocomposites formed on poly(ethylene terephthalate) substrates. Compos. Part B: Eng. 2015, 69, 154-158.

47

Chen, G.; Liang, B.; Liu, Z.; Yu, G.; Xie, X. M.; Luo, T.; Xie, Z.; Chen, D.; Zhu,M.-Q.; Shen, G. Z. High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays. J. Mater. Chem. C 2014, 2, 1270-1277.

48

Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653-8661.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 August 2016
Revised: 11 November 2016
Accepted: 15 November 2016
Published: 19 December 2016
Issue date: June 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported in part by the National Basic Research Program of China (No. 2014CB921101); the National Natural Science Foundation of China (Nos. 61378025, 61427812, 61274102, and 61504056); Jiangsu Province Shuangchuang Team Program. Y. D. L. acknowledges funding of International Postdoctoral Exchange Fellowship Program (No. 20150023), the China Postdoctoral Science Foundation (No. 2014M551558) and Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402028B).

Return