Journal Home > Volume 10 , Issue 3

We demonstrate a facile hydrothermal one-pot synthesis method for producing single crystalline mesoporous PtPd bimetallic nanoparticles with a hollow interior and porous surface structure in the presence of Br- and I- ions. The formation process analysis indicated that the coexistence of Br- and I- ions is responsible for the formation of the novel bimetallic nanoparticles. The changes in the reduction potential of Pt and Pd metal ions achieved by the coordination with different halide ions resulted in the formation of hollow interiors as a galvanic reaction between Pd2+ and Pt4+ ions occurred. In addition, the size of the mesoporous PtPd nanoparticles can be well controlled by slightly changing the amount of I- ions used. The electrochemical tests indicated that the as- synthesized single crystalline mesoporous PtPd hollow nanoparticles exhibited enhanced catalytic properties toward methanol and ethanol oxidation reactions as compared with the commercial Pt black and Pt/C materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction

Show Author's information Pengtao Qiu1Shaomin Lian1Guang Yang2Shengchun Yang1,3( )
School of Science, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic PhysicsState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong UniversityXi'an710049China
Electronic Materials Research LaboratoryKey Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong UniversityXi'an710049China
Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou Academy of Xi'an Jiaotong UniversitySuzhou215000China

Abstract

We demonstrate a facile hydrothermal one-pot synthesis method for producing single crystalline mesoporous PtPd bimetallic nanoparticles with a hollow interior and porous surface structure in the presence of Br- and I- ions. The formation process analysis indicated that the coexistence of Br- and I- ions is responsible for the formation of the novel bimetallic nanoparticles. The changes in the reduction potential of Pt and Pd metal ions achieved by the coordination with different halide ions resulted in the formation of hollow interiors as a galvanic reaction between Pd2+ and Pt4+ ions occurred. In addition, the size of the mesoporous PtPd nanoparticles can be well controlled by slightly changing the amount of I- ions used. The electrochemical tests indicated that the as- synthesized single crystalline mesoporous PtPd hollow nanoparticles exhibited enhanced catalytic properties toward methanol and ethanol oxidation reactions as compared with the commercial Pt black and Pt/C materials.

Keywords: electrocatalysis, mesoporous, single crystal, noble metal, hollow interior

References(63)

1

Jayashree, R. S.; Spendelow, J. S.; Yeom, J.; Rastogi, C.; Shannon, M. A.; Kenis, P. J. A. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochim. Acta 2005, 50, 4674-4682.

2

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

3

Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. D. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc. 2008, 130, 5406-5407.

4

Yu, X. W.; Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008, 182, 124-132.

5

Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797-9806.

6

Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824-832.

7

Zhu, E. B.; Li, Y. J.; Chiu, C. Y.; Huang, X. Q.; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149-157.

8

Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590-1599.

9

Liu, M. M.; Lu, Y. Z.; Chen, W. PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv. Funct. Mater. 2013, 23, 1289-1296.

10

Lu, Y. Z.; Chen, W. Nanoneedle-covered Pd-Ag nanotubes: High electrocatalytic activity for formic acid oxidation. J. Phys. Chem. C 2010, 114, 21190-21200.

11

Lu, Y. Z.; Chen, W. PdAg alloy nanowires: Facile one-step synthesis and high electrocatalytic activity for formic acid oxidation. ACS Catal. 2012, 2, 84-90.

12

Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Wang, X. D.; Chen, W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2014, 136, 11687-11697.

13

Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Wang, X. D.; Chen, W. Highly active and durable PdAg@Pd core-shell nanoparticles as fuel-cell electrocatalysts for the oxygen reduction reaction. Part. Part. Syst. Charact. 2016, 33, 560-568.

14

Adams, B. D.; Wu, G. S.; Nigro, S.; Chen, A. C. Facile synthesis of Pd−Cd nanostructures with high capacity for hydrogen storage. J. Am. Chem. Soc. 2009, 131, 6930-6931.

15

Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals. J. Am. Chem. Soc. 2009, 131, 13916-13917.

16

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.

17

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2013, 52, 12337-12340.

18

Yang, S. C.; Qiu, P. T.; Yang, G. Graphene induced formation of single crystal Pt nanosheets through 2-dimensional aggregation and sintering of nanoparticles in molten salt medium. Carbon 2014, 77, 1123-1131.

19

Liu, X. J.; Cui, C. H.; Li, H. H.; Lei, Y.; Zhuang, T. T.; Sun, M.; Arshad, M. N.; Albar, H. A.; Sobahi, T. R.; Yu, S. H. Hollow ternary PtPdCu nanoparticles: A superior and durable cathodic electrocatalyst. Chem. Sci. 2015, 6, 3038-3043.

20

Yang, S. C.; Luo, X. Mesoporous nano/micro noble metal particles: Synthesis and applications. Nanoscale 2014, 6, 4438-4457.

21

Linares, N.; Silvestre-Albero, A. M.; Serrano, E.; Silvestre- Albero, J.; García-Martínez, J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 2014, 43, 7681-7717.

22

You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013, 42, 2880-2904.

23

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.

24

Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J. Y.; Xie, Z. X.; Xia, Y. N. Pt-based icosahedral nanocages: Using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 2016, 16, 1467-1471.

25

He, L. L.; Song, P.; Wang, A. J.; Zheng, J. N.; Mei, L. P.; Feng, J. J. A general strategy for the facile synthesis of AuM (M = Pt/Pd) alloyed flowerlike-assembly nanochains for enhanced oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 5352-5359.

26

Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722-9725.

27

Li, H. H.; Ma, S. Y.; Fu, Q. Q.; Liu, X. J.; Wu, L.; Yu, S. H. Scalable bromide-triggered synthesis of Pd@Pt core-shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 7862-7868.

28

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

29

Lim, Y.; Kim, S. K.; Lee, S. C.; Choi, J.; Nahm, K. S.; Yoo, S. J.; Kim, P. One-step synthesis of carbon-supported Pd@Pt/C core-shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability. Nanoscale 2014, 6, 4038-4042.

30

Wu, H.; Mei, S. J.; Cao, X. Q.; Zheng, J. W.; Lin, M.; Tang, J. X.; Ren, F. F.; Du, Y. K.; Pan, Y.; Gu, H. W. Facile synthesis of Pt/Pd nanodendrites for the direct oxidation of methanol. Nanotechnology 2014, 25, 195702.

31

Zhao, H. D.; Yu, C. Z.; You, H. J.; Yang, S. C.; Guo, Y.; Ding, B. J.; Song, X. P. A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions. J. Mater. Chem. 2012, 22, 4780-4789.

32

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692-697.

33

Lu, Y. Z.; Chen, W. One-pot synthesis of heterostructured Pt-Ru nanocrystals for catalytic formic acid oxidation. Chem. Commun. 2011, 47, 2541-2543.

34

Kuang, Y.; Zhang, Y.; Cai, Z.; Feng, G.; Jiang, Y. Y.; Jin, C. H.; Luo, J.; Sun, X. M. Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chem. Sci. 2015, 6, 7122-7129.

35

Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117-5160.

36

Lu, Y. Z.; Jiang, Y. Y.; Chen, W. PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2013, 2, 836-844.

37

Lu, Y. Z.; Jiang, Y. Y.; Chen, W. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation. Nanoscale 2014, 6, 3309-3315.

38

Chen, Y.; Yang, J.; Yang, Y.; Peng, Z. Y.; Li, J. H.; Mei, T.; Wang, J. Y.; Hao, M.; Chen, Y. L.; Xiong, W. L. et al. A facile strategy to synthesize three-dimensional Pd@Pt core- shell nanoflowers supported on graphene nanosheets as enhanced nanoelectrocatalysts for methanol oxidation. Chem. Commun. 2015, 51, 10490-10493.

39

Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 2011, 5, 8212-8222.

40

Lu, Y. Z.; Jiang, Y. Y.; Wu, H. B.; Chen, W. Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping-cleaning. J. Phys. Chem. C 2013, 117, 2926-2938.

41

Lv, J. J.; Mei, L. P.; Weng, X. X.; Wang, A. J.; Chen, L. L.; Liu, X. F.; Feng, J. J. Facile synthesis of three-dimensional Pt-Pd alloyed multipods with enhanced electrocatalytic activity and stability for ethylene glycol oxidation. Nanoscale 2015, 7, 5699-5705.

42

Li, S. S.; Lv, J. J.; Teng, L. N.; Wang, A. J.; Chen, J. R.; Feng, J. J. Facile synthesis of PdPt@Pt nanorings supported on reduced graphene oxide with enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 10549-10555.

43

Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078-6089.

44

Kim, Y.; Lee, Y. W.; Kim, M.; Han, S. W. One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies. Chem. —Eur. J. 2014, 20, 7901-7905.

45

Zhang, J. F.; Wan, L.; Liu, L.; Deng, Y. D.; Zhong, C.; Hu, W. B. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 2016, 8, 3962-3972.

46

Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634-7640.

47

Jiang, B.; Li, C. L.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575-1581.

48

Qu, X. M.; Cao, Z. M.; Zhang, B. W.; Tian, X. C.; Zhu, F. C.; Zhang, Z. C.; Jiang, Y. X.; Sun, S. G. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 2016, 52, 4493-4496.

49

Nogami, M.; Koike, R.; Jalem, R.; Kawamura, G.; Yang, Y.; Sasaki, Y. Synthesis of porous single-crystalline platinum nanocubes composed of nanoparticles. J. Phys. Chem. Lett. 2010, 1, 568-571.

50

Lv, J. J.; Zheng, J. N.; Li, S. S.; Chen, L. L.; Wang, A. J.; Feng, J. J. Facile synthesis of Pt-Pd nanodendrites and their superior electrocatalytic activity. J. Mater. Chem. A 2014, 2, 4384-4390.

51

Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y. Y.; Jin, C. H.; Fu, M. S.; Zhang, H.; Yang, D. R. Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem. Commun. 2014, 50, 560-562.

52

Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J. Am. Chem. Soc. 2016, 138, 5753-5756.

53

Zhang, K.; Bin, D.; Yang, B. B.; Wang, C. Q.; Ren, F. F.; Du, Y. K. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale 2015, 7, 12445-12451.

54

Kim, Y.; Noh, Y.; Lim, E. J.; Lee, S.; Choi, S. M.; Kim, W. B. Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J. Mater. Chem. A 2014, 2, 6976-6986.

55

Miao, T. T.; Song, Y. H.; Bi, C. X.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Correlation of surface Ag content in AgPd shells of ultrasmall core-shell Au@AgPd nanoparticles with enhanced electrocatalytic performance for ethanol oxidation. J. Phys. Chem. C 2015, 119, 18434-18443.

56

Ye, Y.; Joo, J.; Lee, S.; Lee, J. A direct one-step synthetic route to Pd-Pt nanostructures with controllable shape, size, and composition for electrocatalytic applications. J. Mater. Chem. A 2014, 2, 19239-19246.

57

Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4808-4812.

58

Wang, L.; Nemoto, Y.; Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 2011, 133, 9674-9677.

59

Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Hu, H. W.; Wang, C. Z.; Huang, C. D.; Wang, Y. X. Tailoring the morphology of Pt3Cu1 nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale 2016, 8, 3075-3084.

60

Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 2015, 6, 6786.

61

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.

62

Qiu, H. J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. Aligned nanoporous Pt-Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal. 2015, 5, 3779-3785.

63

Ren, F. F.; Wang, H. W.; Zhai, C. Y.; Zhu, M. S.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K.; Lu, W. S. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces 2014, 6, 3607-3614.

File
nr-10-3-1064_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2016
Revised: 09 November 2016
Accepted: 11 November 2016
Published: 23 December 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We thank Dr. Chuansheng Ma from the International Center for Dielectric Research, Xi'an Jiaotong University, for their support with HRTEM, Xiaojing Zhang and Liqun Wang from the School of Science, Xi'an Jiaotong University, for their support of TEM and SEM characterizations. This work is supported by National Natural Science Foundation of China (No. 51271135), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities, and the Natural Science Foundation of Shanxi Province (No. 2015JM5166).

Return