Journal Home > Volume 10 , Issue 3

A cobalt-silica hybrid nanocatalyst bearing small cobalt particles of diameter ~5 nm was prepared through a hydrothermal reaction and hydrogen reduction. The resulting material showed very high CO conversion (> 82%) and high hydrocarbon productivity (~1.0 gHC·gcat-1·h-1) with high activity (~8.5 × 10-5 molCO·gCo-1·s-1) in the Fischer-Tropsch synthesis reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer- Tropsch reaction

Show Author's information Ji Chan Park1,2( )Shin Wook Kang1Jeong-Chul Kim3Jae In Kwon1Sanha Jang1Geun Bae Rhim1Mijong Kim4Dong Hyun Chun1,2Ho-Tae Lee1Heon Jung1Hyunjoon Song4( )Jung-Il Yang1( )
Clean Fuel LaboratoryKorea Institute of Energy ResearchDaejeon34129Republic of Korea
Advanced Energy TechnologyUniversity of Science and TechnologyDaejeon34113Republic of Korea
Center for Nanomaterials & Chemical ReactionsInstitute for Basic ScienceDaejeon34141Republic of Korea
Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea

Abstract

A cobalt-silica hybrid nanocatalyst bearing small cobalt particles of diameter ~5 nm was prepared through a hydrothermal reaction and hydrogen reduction. The resulting material showed very high CO conversion (> 82%) and high hydrocarbon productivity (~1.0 gHC·gcat-1·h-1) with high activity (~8.5 × 10-5 molCO·gCo-1·s-1) in the Fischer-Tropsch synthesis reaction.

Keywords: Fischer-Tropsch synthesis, thermal stability, hybrid nanostructure, metal silicate hydroxide, cobalt catalyst

References(43)

1

Dry, M. E. High quality diesel via the Fischer-Tropsch process—A review. J. Chem. Technol. Biotechnol. 2002, 77, 43-50.

2

Luque, R.; de la Osa, A. R.; Campelo, J. M.; Romero, A. A.; Valverde J. L.; Sanchez, P. Design and development of catalysts for biomass-to-liquid-Fischer-Tropsch (BTL-FT) processes for biofuels production. Energy Environ. Sci. 2012, 5, 5186-5202.

3

Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S. A review of advanced catalyst development for Fischer- Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 2014, 4, 2210-2229.

4

Dry, M. E. The Fischer-Tropsch process: 1950-2000. Catal. Today 2002, 71, 227-241.

5

James, O. O.; Chowdhury, B.; Mesubi, M. A.; Maity, S. Reflections on the chemistry of the Fischer-Tropsch synthesis. RSC Adv. 2012, 2, 7347-7366.

6

Schulz, H. Major and minor reactions in Fischer-Tropsch synthesis on cobalt catalysts. Top. Catal. 2003, 26, 73-85.

7

Khodakov, A. Y.; Chu, W.; Fongarland, P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007, 107, 1692-1744.

8

Schulz, H. Short history and present trends of Fischer- Tropsch synthesis. Appl. Catal. A: Gen. 1999, 186, 3-12.

9

de Klerk, A. Fischer-Tropsch refining: Technology selection to match molecules. Green Chem. 2008, 10, 1249-1279.

10

van Steen, E.; Claeys, M. Fischer-Tropsch catalysts for the biomass-to-liquid (BTL)-process. Chem. Eng. Technol. 2008, 31, 655-666.

11

Chambrey, S.; Fongarland, P.; Karaca, H.; Piché, S.; Griboval-Constant, A.; Schweich, D.; Luck, F.; Savin, S.; Khodakov, A. Y. Fischer-Tropsch synthesis in milli-fixed bed reactor: Comparison with centimetric fixed bed and slurry stirred tank reactors. Catal. Today 2011, 171, 201-206.

12

Guettel, R.; Kunz, U.; Turek, T. Reactors for Fischer-Tropsch synthesis. Chem. Eng. Technol. 2008, 31, 746-754.

13

Todić, B.; Ordomsky, V. V.; Nikačević, N. M.; Khodakov, A. Y.; Bukur, D. B. Opportunities for intensification of Fischer-Tropsch synthesis through reduced formation of methane over cobalt catalysts in microreactors. Catal. Sci. Technol. 2015, 5, 1400-1411.

14

Davis, B. H. Fischer-Tropsch synthesis: Overview of reactor development and future potentialities. Top. Catal. 2005, 32, 143-168.

15

Wang, Z. -J.; Yan, Z.; Liu, C. -J.; Goodman, D. W. Surface science studies on cobalt Fischer-Tropsch catalysts. ChemCatChem 2011, 3, 551-559.

16

Iglesia, E. Design, synthesis, and use of cobalt-based Fischer- Tropsch synthesis catalysts. Appl. Catal. A: Gen. 1997, 161, 59-78.

17

Sartipi, S.; Parashar, K.; Makkee, M.; Gascon, J.; Kapteijn, F. Breaking the Fischer-Tropsch synthesis selectivity: Direct conversion of syngas to gasoline over hierarchical Co/H- ZSM-5 catalysts. Catal. Sci. Technol. 2013, 3, 572-575.

18

Ha, K. -S.; Kwak, G.; Jun, K. -W.; Hwang, J.; Lee, J. Ordered mesoporous carbon nanochannel reactors for high- performance Fischer-Tropsch synthesis. Chem. Commun. 2013, 49, 5141-5143.

19

Fu, T. J.; Jiang, Y. H.; Lv, J.; Li, Z. H. Effect of carbon support on Fischer-Tropsch synthesis activity and product distribution over Co-based catalysts. Fuel Process. Technol. 2013, 110, 141-149.

20

Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Oosterbeek, H.; Holewijn, J. E.; Xu, X. D.; Kapteijn, F.; van Dillen, A. J.; de Jong, K. P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 2006, 128, 3956-3964.

21

Ohtsuka, Y.; Arai, T.; Takasaki, S.; Tsubouchi, N. Fischer- Tropsch synthesis with cobalt catalysts supported on mesoporous silica for efficient production of diesel fuel fraction. Energy Fuel 2003, 17, 804-809.

22

Zhang, Q. H.; Cheng, K.; Kang, J. C.; Deng, W. P.; Wang, Y. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem 2014, 7, 1251-1264.

23

Xie, R. Y.; Li, D. B.; Hou, B.; Wang, J. G.; Jia, L. T.; Sun, Y. H. Solvothermally derived Co3O4@m-SiO2 nanocomposites for Fischer-Tropsch synthesis. Catal. Commun. 2011, 12, 380-383.

24

Li, X. G.; He, J. J.; Meng, M.; Yoneyama, Y.; Tsubaki, N. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity. J. Catal. 2009, 265, 26-34.

25

Tsakoumis, N. E.; Rønning, M.; Borg, Ø.; Rytter, E.; Holmen, A. Deactivation of cobalt based Fischer-Tropsch catalysts: A review. Catal. Today 2010, 154, 162-182.

26

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.

27

Yang, X. -F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.

28

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058-2062.

29

Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single- atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758-5764.

30

Guo, Z. Y.; Du, F. L.; Li, G. C.; Cui, Z. L. Controlled synthesis of mesoporous SiO2/Ni3Si2O5(OH)4 core-shell microspheres with tunable chamber structures via a self- template method. Chem. Commun. 2008, 2911-2913.

31

Kim, M.; Park, J. C.; Kim, A.; Park, K. H.; Song, H. Porosity control of Pd@SiO2 yolk-shell nanocatalysts by the formation of nickel phyllosilicate and its influence on suzuki coupling reactions. Langmuir 2012, 28, 6441-6447.

32

Li, Z. W.; Kathiraser, Y.; Kawi, S. Facile synthesis of high surface area yolk-shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem 2015, 7, 160-168.

33

Park, J. C.; Lee, H. J.; Bang, J. U.; Park, K. H.; Song, H. Chemical transformation and morphology change of nickel- silica hybrid nanostructuresvia nickel phyllosilicates. Chem. Commun. 2009, 7345-7347.

34

Park, J. C.; Lee, H. J.; Jung, H. S.; Kim, M.; Kim, H. J.; Park, K. H.; Song, H. Gram-scale synthesis of magnetically separable and recyclable Co@SiO2 yolk-shell nanocatalysts for phenoxycarbonylation reactions. ChemCatChem 2011, 3, 755-760.

35

Choi, H. R.; Woo, H.; Jang, S.; Cheon, J. Y.; Kim, C.; Park, J.; Park, K. H.; Joo, S. H. Ordered mesoporous carbon supported colloidal Pd nanoparticle based model catalysts for suzuki coupling reactions: Impact of organic capping agents. ChemCatChem 2012, 4, 1587-1594.

36

Burattin, P.; Che, M.; Louis, C. Molecular approach to the mechanism of deposition-precipitation of the Ni(Ⅱ) phase on silica. J. Phys. Chem. B 1998, 102, 2722-2732.

37

Mizutani, T.; Fukushima, Y.; Okada, A.; Kamigaito, O.; Kobayashi, T. Synthesis of 1: 1 and 2: 1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clays Clay Miner. 1991, 39, 381-386.

38

White, R. D.; Bavykin, D. V.; Walsh, F. C. Morphological control of synthetic Ni3Si2O5(OH)4 nanotubes in an alkaline hydrothermal environment. J. Mater. Chem. A 2013, 1, 548-556.

39

McDonal, A.; Scott, B.; Villemure, G. Hydrothermal preparation of nanotubular particles of a 1: 1 nickel phyllosilicate. Micropor. Mesopor. Mat. 2009, 120, 263-266.

40

Martínez, A.; López, C.; Márquez, F.; Díaz, I. Fischer- Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters. J. Catal. 2003, 220, 486-499.

41

Eggenhuisen, T. M.; den Breejen, J. P., Verdoes, D.; de Jongh, P. E.; de Jong, K. P. Fundamentals of melt infiltration for the preparation of supported metal catalysts. The case of Co/SiO2 for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2010, 132, 18318-18325.

42

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.

43

Puskas, I.; Hurlbut, R. S. Comments about the causes of deviations from the Anderson-Schulz-Flory distribution of the Fischer-Tropsch reaction products. Catal. Today 2003, 84, 99-109.

File
nr-10-3-1044_ESM.pdf (484.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 August 2016
Revised: 23 October 2016
Accepted: 09 November 2016
Published: 11 January 2017
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported by the Research and Development Program of the Korea Institute of Energy Research (KIER) (No. B6-2439) and funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 10050509).

Return