Journal Home > Volume 10 , Issue 3

We synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles via an easy and scalable solution synthesis. The synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles were annealed to remove the organic surfactants without phase transitions or side reactions. Electrons can be transferred via metallic Cu3.8Ni, which will not react with lithium ions. The heterogeneous structures of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles could enhance the lithium ion mobility and improve the life cycle, and these materials are therefore promising candidates as high- power-density and high-energy-density anode materials for lithium-ion batteries in diverse applications, such as electrical vehicles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles for advanced lithium-ion battery anode materials

Show Author's information Jaewon Lee3Huazhang Zhu2Wei Deng1Yue Wu1,2( )
School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghai200235China
Department of Chemical and Biological EngineeringIowa State University, 2114 Sweeney HallAmes, IA50010USA
School of Chemical EngineeringPurdue University, 480 Stadium Mall DriveWest Lafayette, IN47907USA

Abstract

We synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles via an easy and scalable solution synthesis. The synthesized Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles were annealed to remove the organic surfactants without phase transitions or side reactions. Electrons can be transferred via metallic Cu3.8Ni, which will not react with lithium ions. The heterogeneous structures of Cu3.8Ni/CoO and Cu3.8Ni/MnO nanoparticles could enhance the lithium ion mobility and improve the life cycle, and these materials are therefore promising candidates as high- power-density and high-energy-density anode materials for lithium-ion batteries in diverse applications, such as electrical vehicles.

Keywords: nanoparticles, lithium ion battery, metal oxide, metallic

References(40)

1

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

2

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

3

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-4613.

4

Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032-3040.

5

Gao, J.; Lowe, M. A.; Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 2011, 23, 3223-3227.

6

Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 13826-13831.

7

Sharma, N.; Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim. Acta 2004, 49, 1035-1043.

8

Hu, J.; Li, H.; Huang, X. J.; Chen, L. Q. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ionics 2006, 177, 2791-2799.

9

Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300-3308.

10

Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996-1004.

11

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

12

Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046-3052.

13

Wen, Z. H.; Wang, Q.; Zhang, Q.; Li, J. H. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772-2778.

14

Yang, Y.; Liang, Q. Q.; Li, J. H.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 2011, 4, 882-890.

15

Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 2003, 150, A133-A139.

16

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.

17

Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2- nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770-21774.

18

Greiner, M. T.; Helander, M. G.; Tang, W. M.; Wang, Z. B.; Qiu, J.; Lu, Z. H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76-81.

19

Rao, C. N. R.; Rao, G. V. S. Electrical conduction in metal oxides. Phys. Status Solidi A 1970, 1, 597-652.

20

Kim, M. G.; Sim, S.; Cho, J. Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox- transmetalation reaction. Adv. Mater. 2010, 22, 5154-5158.

21

Lee, H.; Cho, J. Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 2007, 7, 2638-2641.

22

Su, L. W.; Jing, Y.; Zhou, Z. Li ion battery materials with core-shell nanostructures. Nanoscale 2011, 3, 3967-3983.

23

Liu, Y. M.; Zhao, X. Y.; Li, F.; Xia, D. G. Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 6448-6452.

24

Yuan, W. W.; Zhang, J.; Xie, D.; Dong, Z. M.; Su, Q. M.; Du, G. H. Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochim. Acta 2013, 108, 506-511.

25

Fransson, L.; Eriksson, T.; Edström, K.; Gustafsson, T.; Thomas, J. O. Influence of carbon black and binder on Li-ion batteries. J. Power Sources 2001, 101, 1-9.

26
Electrical resistivity and conductivity[Online]. Wikipedia, 2016; https://en.wikipedia.org/wiki/Electrical_resistivity_ and_conductivity#cite_note-Giancoli-20 (accessed Aug 20, 2016).
27

Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567-573.

28
Standard electrode potential (data page)[Online]. Wikipedia, 2016; https://en.wikipedia.org/wiki/Standard_electrode_ potential_(data_page) (accessed Aug 20, 2016).
29

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

30

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.

31

Zhang, Y. W.; Huang, W. Y.; Habas, S. E.; Kuhn, J. N.; Grass, M. E.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Near- monodisperse Ni-Cu bimetallic nanocrystals of variable composition: Controlled synthesis and catalytic activity for H2 generation. J. Phys. Chem. C 2008, 112, 12092-12095.

32

Oliveira, F. C. C.; Effenberger, F. B.; Sousa, M. H.; Jardim, R. F.; Kiyohara, P. K.; Dupont, J.; Rubim, J. C.; Rossi, L. M. Ionic liquids as recycling solvents for the synthesis of magnetic nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 13558-13564.

33

Li, X.; Tang, A. W.; Li, J. T.; Guan, L.; Dong, G. Y.; Teng, F. Heating-up synthesis of MoS2 nanosheets and their electrical bistability performance. Nanoscale Res. Lett. 2016, 11, 171.

34

Vijayaraghavan, B.; Ely, D. R.; Chiang, Y. M.; García- García, R.; García, R. E. An analytical method to determine tortuosity in rechargeable battery electrodes. J. Electrochem. Soc. 2012, 159, A548-A552.

35

Zheng, X. F.; Shen, G. F.; Li, Y.; Duan, H. N.; Yang, X. Y.; Huang, S. Z.; Wang, H. G.; Wang, C.; Deng, Z.; Su, B. -L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1394-1400.

36

Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376-387.

37
Fernández-García, M.; Rodriguez, J. A. Metal oxide nanoparticles. In Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: New York, 2011.https://doi.org/10.1002/9781119951438.eibc0331
DOI
38

Guo, D.; Xie, G. X.; Luo, J. B. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D: Appl. Phys. 2014, 47, 013001.

39

He, J. B.; Kanjanaboos, P.; Frazer, N. L.; Weis, A.; Lin, X. M.; Jaeger, H. M. Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 2010, 6, 1449-1456.

40

Liu, J. F.; He, Y.; Chen, W.; Zhang, G. Q.; Zeng, Y. W.; Kikegawa, T.; Jiang, J. Z. Bulk modulus and structural phase transitions of wurtzite CoO nanocrystals. J. Phys. Chem. C 2007, 111, 2-5.

File
nr-10-3-1033_ESM.pdf (779.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 August 2016
Revised: 16 October 2016
Accepted: 18 October 2016
Published: 23 December 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

Y. W. acknowledges the support from Iowa State University and the support from The Eastern Scholar Program.

Return